Scintillation proximity assay (SPA) as a new approach to determine a ligand’s kinetic profile. A case in point for the adenosine A1 receptor
详细信息    查看全文
  • 作者:Lizi Xia ; Henk de Vries ; Ad P. IJzerman ; Laura H. Heitman
  • 关键词:G protein ; coupled receptors ; Scintillation proximity assay ; Binding kinetics ; Adenosine A1 receptor ; Residence time
  • 刊名:Purinergic Signalling
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 页码:115-126
  • 全文大小:1,033 KB
  • 参考文献:1.Harder D, Fotiadis D (2012) Measuring substrate binding and affinity of purified membrane transport proteins using the scintillation proximity assay. Nat Protoc 7(9):1569–1578CrossRef PubMed
    2.Glickman JF, Schmid A, Ferrand S (2008) Scintillation proximity assays in high-throughput screening. Assay Drug Dev Technol 6(3):433–455CrossRef PubMed
    3.Bosworth N, Towers P (1989) Scintillation proximity assay. Nature 341(6238):167–168CrossRef PubMed
    4.Hart HE, Greenwald EB (1979) Scintillation-proximity assay of antigen—antibody binding kinetics: concise communication. J Nucl Med 20(10):1062–1065PubMed
    5.Udenfriend S, Gerber LD, Brink L, Spector S (1985) Scintillation proximity radioimmunoassay utilizing 125I-labeled ligands. Proc Natl Acad Sci U S A 82(24):8672–8676PubMedCentral CrossRef PubMed
    6.Heise CE, Sullivan SK, Crowe PD (2007) Scintillation proximity assay as a high-throughput method to identify slowly dissociating nonpeptide ligand binding to the GnRH receptor. J Biomol Screen 12(2):235–239CrossRef PubMed
    7.Swinney DC, Beavis P, Chuang K-T, Zheng Y, Lee I, Gee P, Deval J, Rotstein DM, Dioszegi M, Ravendran P, Zhang J, Sankuratri S, Kondru R, Vauquelin G (2014) A study of the molecular mechanism of binding kinetics and long residence times of human CCR5 receptor small molecule allosteric ligands. Brit J Pharmacol 171(14):3364–3375CrossRef
    8.Chao J, Taveras AG, Chao J, Aki C, Dwyer M, Yu Y, Purakkattle B, Rindgen D, Jakway J, Hipkin W, Fosetta J, Fan X, Lundell D, Fine J, Minnicozzi M, Phillips J, Merritt JR (2007) C(4)-alkyl substituted furanyl cyclobutenediones as potent, orally bioavailable CXCR2 and CXCR1 receptor antagonists. Bioorg Med Chem Lett 17(13):3778–3783CrossRef PubMed
    9.Mikami T, Ochi Y, Suzuki K, Saito T, Sugie Y, Sakakibara M (2008) 5-Amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-α]pyridine-8-carboxamide (CJ-033,466), a novel and selective 5-hydroxytryptamine4 receptor partial agonist: pharmacological profile in vitro and gastroprokinetic effect in conscious dogs. J Pharmacol Exp Ther 325(1):190–199CrossRef PubMed
    10.Auld DS Farmen MW, Kahl SD et al (2012) Receptor binding assays for HTS and drug discovery, Assay Guidance Manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda
    11.Tummino PJ, Copeland RA (2008) Residence time of receptor—ligand complexes and its effect on biological function. Biochemistry 47(20):5481–5492CrossRef PubMed
    12.Guo D, Hillger JM, IJzerman AP, Heitman LH (2014) Drug-target residence time—a case for G protein-coupled receptors. Med Res Rev 34(4):856–892CrossRef PubMed
    13.Sykes DA, Dowling MR, Charlton SJ (2009) Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. Mol Pharmacol 76(3):543–551CrossRef PubMed
    14.Guo D, Mulder-Krieger T, IJzerman AP, Heitman LH (2012) Functional efficacy of adenosine A(2A) receptor agonists is positively correlated to their receptor residence time. Brit J Pharmacol 166(6):1846–1859CrossRef
    15.Vilums M, Zweemer AJM, Yu Z, de Vries H, Hillger JM, Wapenaar H, Bollen IAE, Barmare F, Gross R, Clemens J, Krenitsky P, Brussee J, Stamos D, Saunders J, Heitman LH, IJzerman AP (2013) Structure-kinetic relationships—an overlooked parameter in hit-to-lead optimization: a case of cyclopentylamines as chemokine receptor 2 antagonists. J Med Chem 56(19):7706–7714CrossRef PubMed
    16.Guo D, Xia L, van Veldhoven JPD, Hazeu M, Mocking T, Brussee J, IJzerman AP, Heitman LH (2014) Binding kinetics of ZM241385 derivatives at the human adenosine A2A receptor. ChemMedChem 9(4):752–761CrossRef PubMed
    17.van Veldhoven JPD, Liu R, Thee SA, Wouters Y, Verhoork SJM, Mooiman C, Louvel J, IJzerman AP (2015) Affinity and kinetics study of anthranilic acids as HCA2 receptor agonists. Bioorgan Med Chem 23(14):4013–4025CrossRef
    18.Motulsky HJ, Mahan LC (1984) The kinetics of competitive radioligand binding predicted by the law of mass action. Mol Pharmacol 25(1):1–9PubMed
    19.Morriello GJ, Chicchi G, Johnson T, Mills SG, DeMartino J, Kurtz M, Tsao KLC, Zheng S, Tong X, Carlson E, Townson K, Wheeldon A, Boyce S, Collinson N, Rupniak N, DeVita RJ (2010) Fused tricyclic pyrrolizinones that exhibit pseudo-irreversible blockade of the NK1 receptor. Bioorg Med Chem Lett 20(19):5925–5932CrossRef PubMed
    20.Ehlert FJ, Roeske WR, Yamamura HI (1981) Mathematical analysis of the kinetics of competitive inhibition in neurotransmitter receptor binding assays. Mol Pharmacol 19(3):367–371PubMed
    21.Guo D, Dorp EJH, Mulder-Krieger T, Veldhoven JPD, Brussee J, IJzerman AP, Heitman LH (2013) Dual-point competition association assay: a fast and high-throughput kinetic screening method for assessing ligand-receptor binding kinetics. J Biomol Screen 18(3):309–320CrossRef PubMed
    22.Berry J, Price-Jones M, Killian B. (2012) Use of scintillation proximity assay to measure radioligand binding to immobilized receptors without separation of bound from free ligand. In: Davenport AP (Ed.) Receptor Binding Techniques, vol 897. Methods in Molecular Biology. Humana Press, pp 79–94.
    23.Martinson EA, Johnson RA, Wells JN (1987) Potent adenosine receptor antagonists that are selective for the A1 receptor subtype. Mol Pharmacol 31(3):247–252PubMed
    24.Muijlwijk-Koezen JEV, Timmerman H, der Sluis RP, van de Stolpe AC, Menge WMPB, Beukers MW, van der Graaf PH, de Groote M, IJzerman AP (2001) Synthesis and use of FSCPX, an irreversible adenosine A1 antagonist, as a ‘receptor knock-down’ tool. Bioorg Med Chem Lett 11(6):815–818CrossRef PubMed
    25.Klotz K-N, Lohse M, Schwabe U, Cristalli G, Vittori S, Grifantini M (1989) 2-Chloro-N6-[3H]cyclopentyladenosine ([3HCCPA)—a high affinity agonist radioligand for A1 adenosine receptors. N-S Arch Pharmacol 340(6):679–683CrossRef
    26.Cusack NJ, Hourani SMO (1981) 5′-N-ethylcarboxamidoadenosine: a potent inhibitor of human platelet aggregation. Brit J Pharmacol 72(3):443–447CrossRef
    27.Beukers MW, Chang LCW, von Frijtag Drabbe Künzel JK, Mulder-Krieger T, Spanjersberg RF, Brussee J, IJzerman AP (2004) New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 47(15):3707–3709CrossRef PubMed
    28.Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85CrossRef PubMed
    29.Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108CrossRef PubMed
    30.Hoffmann C, Castro M, Rinken A, Leurs R, Hill SJ, Vischer HF (2015) Ligand residence time at GPCRs—why we should take our time to study it. Mol Pharmacol. doi:10.1124/mol.115.099671
    31.Horrocks D (1974) Scintilation solutions. In: Applications of liquid scintillation counting. Academic, New York, pp 35–68
    32.Horrocks D (1974) Liquid scintillation counters and multiplier phototubes. In: Applications of liquid scintillation counting. Academic, New York, pp 69–89
    33.Kahl SD, Sittampalam GS, Weidner J (2012) Calculations and Instrumentation used for Radioligand Binding Assays. Assay Guidance Manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda
    34.Segala E, Errey JC, Fiez-Vandal C, Zhukov A, Cooke RM (2015) Biosensor-based affinities and binding kinetics of small molecule antagonists to the adenosine A2A receptor reconstituted in HDL like particles. FEBS Lett 589(13):1399–1405CrossRef PubMed
    35.Bocquet N, Kohler J, Hug MN, Kusznir EA, Rufer AC, Dawson RJ, Hennig M, Ruf A, Huber W, Huber S (2015) Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance. BBA - Biomembranes 1848(5):1224–1233CrossRef PubMed
    36.Zheng W, Carroll SS, Inglese J, Graves R, Howells L, Strulovici B (2001) Miniaturization of a hepatitis C virus RNA polymerase assay using a −102°C cooled CCD camera-based imaging system. Anal Biochem 290(2):214–220CrossRef PubMed
    37.Bryant R, McGuinness D, Turek-Etienne T, Guyer D, Yu L, Howells L, Caravano J, Zhai Y, Lachowicz J (2004) WGA-coated yttrium oxide beads enable an imaging-based adenosine 2a receptor binding scintillation proximity assay suitable for high throughput screening. Assay Drug Dev Technol 2(3):290–299CrossRef PubMed
  • 作者单位:Lizi Xia (1)
    Henk de Vries (1)
    Ad P. IJzerman (1)
    Laura H. Heitman (1)

    1. Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Pharmacology and Toxicology
    Human Physiology
    Neurosciences
    Cancer Research
  • 出版者:Springer Netherlands
  • ISSN:1573-9546
文摘
Scintillation proximity assay (SPA) is a radio-isotopic technology format used to measure a wide range of biological interactions, including drug-target binding affinity studies. The assay is homogeneous in nature, as it relies on a “mix and measure” format. It does not involve a filtration step to separate bound from free ligand as is the case in a traditional receptor-binding assay. For G protein-coupled receptors (GPCRs), it has been shown that optimal binding kinetics, next to a high affinity of a ligand, can result in more desirable pharmacological profiles. However, traditional techniques to assess kinetic parameters tend to be cumbersome and laborious. We thus aimed to evaluate whether SPA can be an alternative platform for real-time receptor-binding kinetic measurements on GPCRs. To do so, we first validated the SPA technology for equilibrium binding studies on a prototypic class A GPCR, the human adenosine A1 receptor (hA1R). Differently to classic kinetic studies, the SPA technology allowed us to study binding kinetic processes almost real time, which is impossible in the filtration assay. To demonstrate the reliability of this technology for kinetic purposes, we performed the so-called competition association experiments. The association and dissociation rate constants (k on and k off) of unlabeled hA1R ligands were reliably and quickly determined and agreed very well with the same parameters from a traditional filtration assay performed simultaneously. In conclusion, SPA is a very promising technique to determine the kinetic profile of the drug-target interaction. Its robustness and potential for high-throughput may render this technology a preferred choice for further kinetic studies. Keywords G protein-coupled receptors Scintillation proximity assay Binding kinetics Adenosine A1 receptor Residence time

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700