Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis
详细信息    查看全文
  • 作者:Paulo Emilio Feuser ; Amanda Virtuoso Jacques…
  • 关键词:Superparamagnetic ; Nanoparticles ; Poly(methyl methacrylate) ; Folic acid ; Cell uptake ; Targetted drugs ; Nanomedicine
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:18
  • 期:4
  • 全文大小:2,020 KB
  • 参考文献:Abulateefeh SR, Spain SG, Thurecht KJ, Aylott JW, Chan WC, Garnett MC, Alexander C (2011) Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci 1:1722–1734. doi:10.​1002/​mabi.​201100252 CrossRef
    Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144. doi:10.​1186/​1556-276X-7-144 CrossRef
    Andhariya N, Upadhyay R, Mehta R, Chudasama B (2013) Folic acid conjugated magnetic drug delivery system for controlled release of doxorubicin. J Nanopart Res 15:1416. doi:10.​1007/​s11051-013-1416-9 CrossRef
    Arosio P, Orsini F, Piras AN, Sandreschi S, Chiellini F, Corti M, Masa M, Múčková M, Schmidtová L, Ravagli C, Baldi G, Nicolato E, Conti G, Marzola P, Lascialfari A (2015) MR imaging and targeting of human breast cancer cells with folate decorated nanoparticles. RSC Adv 5:39760–39770. doi:10.​1039/​C5RA04880J CrossRef
    Asua JM (2014) Mapping the morphology of polymer-inorganic nanocomposites synthesized by miniemulsion polymerization. Macromol Chem Phys 215:458–464. doi:10.​1002/​macp.​201300696 CrossRef
    Bettencourt A, Almeida AJ (2010) Poly(methyl methacrylate) particulate carriers in drug delivery. J. Microencap. 29(4):353–367. doi:10.​3109/​02652048.​2011.​651500 CrossRef
    Chandrasekharana P, Maity D, Yong CX, Chuangc KH, Ding J, Feng SS (2011) Vitamin E (D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 32(24):5663–5672. doi:10.​1016/​j.​biomaterials.​2011.​04.​037 CrossRef
    Chen D, Tang Q, Li X, Zhou X, Zang J, Xue W-Q, Xiang J-Y, Guo C-Q (2012a) Biocompatibility of magnetic Fe3 O4 nanoparticles and their cytotoxic effect on MCF-7 cells. J Nanomed 7:4973–4985. doi:10.​2147/​IJN.​S35140 CrossRef
    Chen ML, He YJ, Chen XW, Wang JH (2012b) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476. doi:10.​1021/​la303957y CrossRef
    Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Eu-Leong Y, Xu HE, Karsten M (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500:486–489. doi:10.​1038/​nature12327 CrossRef
    Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for mri monitored magnetic targeting of brain tumors. Biomaterials 29:487–496. doi:10.​1016/​j.​biomaterials.​2007.​08.​050 CrossRef
    Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:S25–S30. doi:10.​2144/​000112517 CrossRef
    Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–1148. doi:10.​3762/​bjoc.​6.​130 CrossRef
    Dong S, Cho HJ, Lee WY, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15:1560–1567. doi:10.​1021/​bm401593n CrossRef
    Dorniani D, Hussein MZB, Kura AU, Fakurazi S, Shaari AH, Zalinah A (2012) Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int J Nanomed 7:5745–5756. doi:10.​2147/​IJN.​S35746 CrossRef
    Duan J, Liu M, Zhang Y, Zhao J, Pan Y, Yang X (2012) Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery. J Nanopart Res 14:761–770CrossRef
    Fan L-H, Luo Y-L, Chen Y-S, Zhang C-H, Wei Q-B (2009) Preparation and characterization of Fe3O4 magnetic composite microspheres covered by a P(MAH-co-MAA) copolymer. J Nanopart Res 11:449–458. doi:10.​1007/​s11051-008-9556-z CrossRef
    Feuser PE, Bubniak LS, Santos-Silva MC, Cas Viegas A, Castilho-Fernandes A, Nele M, Ricci-Júnior E, Tedesco AC, Sayer C, Araújo PHH (2015a) Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthemia in U87MG cells. Europ J Polym 68:355–365. doi:10.​1016/​j.​eurpolymj.​2015.​04.​029 CrossRef
    Feuser PE, Fernades AC, Nele M, Cas Viegas A, Tedesco AC, Ricci-Júnior E, Sayer C, de Araújo PHH (2015b) Simultaneous encapsulation of magnetic nanoparticles and zinc phthalocyanine in poly(methyl methacrylate) nanoparticles by miniemulsion polymerization and in vitro studies. Colloid Surf B 135:357–364. doi:10.​1016/​j.​colsurfb.​2015.​07.​067 CrossRef
    Feuser PE, Gaspar PC, Jacques AV, Tedesco AC, Santos-Silva MC, Ricci-Júnior E, Sayer C, Araújo PHH (2016) Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells. Mater Eng C 60:458–466. doi:10.​1016/​j.​msec.​2015.​11.​063 CrossRef
    García-Díaz M, Nonell S, Villanueva A, Stockert JC, Cañete M, Casadó M, Mora M, Sagristá ML (2011) Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity? Biochim Biophys Acta 1808:1063–1071. doi:10.​1016/​j.​bbamem.​2010.​12.​014 CrossRef
    Gosavi SS, Gosavi Y, Alla RK (2010) Local and Systemic Effects of Unpolymerised Monomers. Dent Res J (Isfahan) 7(2):82–87
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 25:3995–4021. doi:10.​1016/​j.​biomaterials.​2004.​10.​012 CrossRef
    He L, Li Z, Fu J, Deng Y, He N, Wang Z, Wang H, Shi Z, Wang Z (2009) Preparation of SiO2/(PMMA/Fe3O4) from monolayer linolenic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J Biomed Nanotechnol 5(5):596–601. doi:10.​1166/​jbn.​2009.​1065 CrossRef
    He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666. doi:10.​1016/​j.​biomaterials.​2010.​01.​065 CrossRef
    Higuchi WI, Misra J (1962) Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof. J Pharm Sci 51:459. doi:10.​1002/​jps.​2600510514 CrossRef
    International standard: Biological Evaluation of Medical Devices–Part 5 (1992) Tests for Cytotoxicity: in vitro methods. ISO 10993-5
    Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci 102(33):11600–11605. doi:10.​1073/​pnas.​0502680102 CrossRef
    Kumar CSSR, Mohamad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug reléase. Adv Drug Deliv Rev 63(9):789–808. doi:10.​1039/​c3ra47542e CrossRef
    Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Ang Chem 48:4488–4507. doi:10.​1002/​anie.​200900723 CrossRef
    Landfester K, Mailander V (2013) Nanocapsules with specific targeting and release properties using miniemulsion polymerization. Expert Opin Drug Deliv 10:593–609. doi:10.​1517/​17425247.​2013.​772976 CrossRef
    Landfester K, Ramires LP (2003) Encapsulated magnetite particles for biomedical application J Phys Condes Matter 15:1345–1361. doi:10.​1088/​0953-8984/​15/​15/​304 CrossRef
    Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci 88(13):5572–5576CrossRef
    Lee SJ, Shim Y-H, Oh JS, Jeong Y-I, Park IK, Lee HC (2015) Folic-acid-conjugated pullulan/poly(dl -lactide-co-glycolide) graft copolymer nanoparticles for folate-receptor-mediated drug delivery. Nanoscale Res Letters 10:43. doi:10.​1186/​s11671-014-0706-1 CrossRef
    Mahdavian AR, Ashjari M, Mobarakeh HS (2008) Nanocomposite particles with core-shell morphology. I. preparation and characterization of Fe3O4–Poly(butyl acrylate-styrene) particles via miniemulsion polymerization. J Appl Polym Sci 21:1242–1249. doi:10.​1002/​app.​28729 CrossRef
    Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4:385–392. doi:10.​1007/​s13204-013-0216-y CrossRef
    Mohapatra S, Mallick SK, Kmaiti T, Ghosh SK, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:385102. doi:10.​1088/​0957-4484/​18/​38/​385102 CrossRef
    Moriyama Y, Narita M, Sato K, Urushiyama M, Koyama S, Hirosawa H, Kishi K, Takahashi M, Takai K, Shibata A (1986) Application of hyperthermia to the treatment of human acute leukemia: purging human leukemic progenitor cells by heat. Blood 67(3):802–804
    Moulin M, Dumontet C, Arrigo A-P (2007) Sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis by hyperthermia. Cancer Lett 250(1):117–127. doi:10.​1016/​j.​canlet.​2006.​10.​019 CrossRef
    Nan A, Leistner J, Turcu R (2013) Magnetite–polylactic acid nanoparticles by surface initiated organocatalysis ring opening polymerization. J Nanopart Res 15:1869CrossRef
    Pan Y-J, Li D, Jin S, Wei C, Wu QY, Guo J, Wang CC (2013) Folate-conjugated poly(N-(2-hydroxypropyl)-methacrylamide-co-methacrylic acid) nanohydrogels with pH/redox dual-stimuli response for controlled drug release. 4:3545, doi: 10.​1039/​c3py00249g
    Pengcheng D, Huiying Y, Jin Z, Peng L (2013) Folic acid-conjugated temperature and pH dual-responsive yolk/shell microspheres as a drug delivery system. J Mater Chem B 1:5298. doi:10.​1039/​c3tb20975 CrossRef
    Qi H, Ratnam M (2006) Synergistic induction of folate receptor B by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Res 66:5875–5882. doi:10.​1158/​0008-5472.​CAN-05-4048 CrossRef
    Qiu G, Wang Q, Wang C, Lau W (2007) Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization. Ultrason Sonochem 14:55–61. doi:10.​1016/​j.​ultsonch.​2006.​03.​001 CrossRef
    Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A, Pandit JK (2014) Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv doi:10.​1155/​2014/​670815
    Romio AP, Rodrigues HH, Peres A, Viegas ADC, Kobitskaya E, Ziener U, Landfester K, Sayer C, Araújo PHH (2013) Encapsulation of magnetic nickel nanoparticles via inverse miniemulsion polymerization. J Appl Polym Sci 129:1426–1433. doi:10.​1002/​app.​38840 CrossRef
    Sahoo B, Sanjana K, Devi P, Banerjee R, Maiti TK, Pramanik P, Dhara D (2013) Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfac 5:3884–3893. doi:10.​1021/​am400572b CrossRef
    Saltan N, Kutlu HM, Hür D, Izcan A, Ridvan S (2011) Interaction of cancer cells with magnetic nanoparticles modified by methacrylamido-folic acid. Int J Nanomed 6:477–484. doi:10.​2147/​IJN.​S16803
    Simioni AR, Primo FL, Rodrigues MMA, Lacava ZGM, Morais PC, Tedesco AC (2007) Binding and photophysical studies of biocompatible magnetic fluid in biological medium and development of magnetic nanoemulsion: a new candidate for cancer treatment. IEE Trans Magn 43(6):2459–2461. doi:10.​1109/​TMAG.​2007.​894126 CrossRef
    Sudimack JBA, Lee RJ (2000) Targeted drug delivery via the folate receptor. Ad Drug Deliv Rev 41:147–162. doi:10.​1016/​S0169-409X(99)00062-9 CrossRef
    Van der Heijden JW, Oerlemans R, Dijkmans BAC, Qi H, Van der Laken CJ, Lems WF, Jackman AL, Kraan MC, Tak PP, Ratnam M, Jansen G (2009) Folate receptor as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum 60:12–21. doi:10.​1002/​art.​24219 CrossRef
    Wang JJ, Liu K, Sung K, Tsai C, Fang JY (2009) Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection. Eur J Pharm Sci 38(2):138–146. doi:10.​1016/​j.​ejps.​2009.​06.​008 CrossRef
    Wibowo SA, Singh M, Reeder KM, Carter JJ, Kovach AR, Menga W, Ratnam M, Zhang F III, Dann CE (2013) Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci USA 110(38):15180–15188. doi:10.​1073/​pnas.​1308827110 CrossRef
    Xu C, Su S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743. doi:10.​1016/​j.​addr.​2012.​10.​008 CrossRef
    Yan F, Li J, Zhang J, Liu F, Yang W (2011) Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J Nanopart Res 11:289–296. doi:10.​1007/​s11051-008-9382-3 CrossRef
    Yang H, Li Y, Li T, Xu M, Chen Y, Wu C, Dang X, Liu Y (2014a) Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci Rep 4:7072. doi:10.​1038/​srep07072 CrossRef
    Yang Y, Guo X, Wei K, Wang L, Yang D, Lai L, Cheng M, Liu Q (2014b) Synthesis and drug-loading properties of folic acid-modified superparamagnetic Fe3O4 hollow microsphere core/mesoporous SiO2 shell composite particles. J Nanop Res 16(2210):1–10. doi:10.​1007/​s11051-013-2210-4 CrossRef
    Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728. doi:10.​1021/​nn2013904 CrossRef
    Zhang JL, Srivastava RS, Misra RDK (2007) Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 23(11):6342–6351. doi:10.​1021/​la0636199 CrossRef
    Zhang J, Jiaxin L, Razavi FS, Mumin AM (2011) One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core–shell nanoparticles. J Nanopart Res 13:1909–1916. doi:10.​1007/​s11051-010-9942-1 CrossRef
    Zhao DL, Zhang HL, Zeng XW, Xia QS, Tang JT (2013) Inductive heat property of Fe3O4/polymer composite nanoparticles in an AC magnetic field for localized hyperthermia. Biomed Mater 1:198–201. doi:10.​1088/​1748-6041/​1/​4/​004 CrossRef
    Zheng W, Gao F, Gu H (2005) Magnetic polymer nanospheres with high and uniform magnetite content. J Magn Magn Mater 288:403–410. doi:10.​1016/​j.​jmmm.​2004.​09.​125 CrossRef
    Zheng N, YinL Song Z, Ma L, Tang H, Gabrielson NP, Lu H, Cheng J (2014) Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials 35:1302–1314. doi:10.​1016/​j.​biomaterials.​2013.​09.​090 CrossRef
    Zhou Q, Zhang Z, Chen T, Guo X, Xhou S (2011) Preparation and characterization of thermosensitive pluronic F127-b-poly(caprolactone) mixed micelles. Colloid Surf B 86(1):45–47. doi:10.​1016/​j.​colsurfb.​2011.​03.​013 CrossRef
  • 作者单位:Paulo Emilio Feuser (1)
    Amanda Virtuoso Jacques (2)
    Juan Marcelo Carpio Arévalo (3)
    Maria Eliane Merlin Rocha (3)
    Maria Claudia dos Santos-Silva (2)
    Claudia Sayer (1)
    Pedro H. Hermes de Araújo (1)

    1. Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
    2. Department of Clinical Analyses, Federal University of Santa Catarina, Florianopolis, Brazil
    3. Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700