Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data
详细信息    查看全文
  • 作者:Nameeta Shah (18)
    Michael Lankerovich (18)
    Hwahyung Lee (18)
    Jae-Geun Yoon (18)
    Brett Schroeder (18)
    Greg Foltz (18)
  • 关键词:Gene fusion ; Glioblastoma ; RNA ; seq ; EGFR fusions ; NTRK1 ; ROS1 ; FGFR3 ; TACC3 ; PIK3C2B ; Non ; coding gene fusions
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:1,117 KB
  • 参考文献:1. Rowley JD: Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. / Nature 1973, 243:290鈥?93. CrossRef
    2. Mitelman F, Johansson B, Mertens F: The impact of translocations and gene fusions on cancer causation. / Nat Rev Cancer 2007, 7:233鈥?45. CrossRef
    3. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, / et al.: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. / Science 2005, 310:644鈥?48. CrossRef
    4. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM: Evidence of recurrent gene fusions in common epithelial tumors. / Trends Mol Med 2006, 12:529鈥?36. CrossRef
    5. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM: Transcriptome sequencing to detect gene fusions in cancer. / Nature 2009, 458:97鈥?01. CrossRef
    6. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, / et al.: Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. / Nature 2007, 448:561鈥?66. CrossRef
    7. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, / et al.: RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. / J Clin Oncol 2012, 30:4352鈥?359. CrossRef
    8. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM: Recurrent gene fusions in prostate cancer. / Nat Rev Cancer 2008, 8:497鈥?11. CrossRef
    9. Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC, Svensson MA, Kitabayashi N, Moss BJ, MacDonald TY, / et al.: Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. / Genome Res 2011, 21:56鈥?7. CrossRef
    10. Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, Asangani IA, Iyer M, Maher CA, Grasso CS, / et al.: Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. / Nat Med 2011, 17:1646鈥?651. CrossRef
    11. Lae M, Freneaux P, Sastre-Garau X, Chouchane O, Sigal-Zafrani B, Vincent-Salomon A: Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. / Mod Pathol 2009, 22:291鈥?98. CrossRef
    12. Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G: Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. / Proc Natl Acad Sci USA 2009, 106:18740鈥?8744. CrossRef
    13. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, / et al.: Transforming fusions of FGFR and TACC genes in human glioblastoma. / Science 2012, 337:1231鈥?235. CrossRef
    14. Celestino R, Sigstad E, Lovf M, Thomassen GO, Groholt KK, Jorgensen LH, Berner A, Castro P, Lothe RA, Bjoro T, / et al.: Survey of 548 oncogenic fusion transcripts in thyroid tumors supports the importance of the already established thyroid fusions genes. / Genes Chromosomes Cancer 2012, 51:1154鈥?164. CrossRef
    15. Williams SV, Hurst CD, Knowles MA: Oncogenic FGFR3 gene fusions in bladder cancer. / Hum Mol Genet 2013, 22:795鈥?03. CrossRef
    16. Crizotinib fact sheet 2012.
    17. Rousseau A, Mokhtari K, Duyckaerts C: The 2007 WHO classification of tumors of the central nervous system - what has changed? / Curr Opin Neurol 2007,2008(21):720鈥?27.
    18. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004鈥?008 http://www.cbtrus.org
    19. Charest A, Lane K, McMahon K, Park J, Preisinger E, Conroy H, Housman D: Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). / Genes Chromosomes Cancer 2003, 37:58鈥?1. CrossRef
    20. Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, Huse JT, Pedraza A, Utsuki S, Yasui Y, / et al.: PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. / Genes Dev 2010, 24:2205鈥?218. CrossRef
    21. Bralten LB, Kloosterhof NK, Gravendeel LA, Sacchetti A, Duijm EJ, Kros JM, van den Bent MJ, Hoogenraad CC, Sillevis Smitt PA, French PJ: Integrated genomic profiling identifies candidate genes implicated in glioma-genesis and a novel LEO1-SLC12A1 fusion gene. / Genes Chromosomes Cancer 2010, 49:509鈥?17.
    22. Parker BC, Annala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P, Li X, Gumin J, Zheng H, Hu L, / et al.: The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. / J Clin Invest 2013, 123:855鈥?65.
    23. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, / et al.: Identification of targetable FGFR gene fusions in diverse cancers. / Cancer Discov 2013.
    24. Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, / et al.: The integrated landscape of driver genomic alterations in glioblastoma. / Nat Genet 2013, 45:1141鈥?149. CrossRef
    25. Kim D, Salzberg SL: TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. / Genome Biol 2011, 12:R72. CrossRef
    26. Benelli M, Pescucci C, Marseglia G, Severgnini M, Torricelli F, Magi A: Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript. / Bioinformatics 2012, 28:3232鈥?239. CrossRef
    27. Piazza R, Pirola A, Spinelli R, Valletta S, Redaelli S, Magistroni V, Gambacorti-Passerini C: FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery. / Nucleic Acids Res 2012, 40:e123. CrossRef
    28. Francis RW, Thompson-Wicking K, Carter KW, Anderson D, Kees UR, Beesley AH: FusionFinder: a software tool to identify expressed gene fusion candidates from RNA-Seq data. / PLoS One 2012, 7:e39987. CrossRef
    29. Asmann YW, Hossain A, Necela BM, Middha S, Kalari KR, Sun Z, Chai HS, Williamson DW, Radisky D, Schroth GP, / et al.: A novel bioinformatics pipeline for identification and characterization of fusion transcripts in breast cancer and normal cell lines. / Nucleic Acids Res 2011, 39:e100. CrossRef
    30. SOLiD鈩?BioScope鈩?Software https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=60680%202&tab=Overview
    31. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, / et al.: The UCSC genome browser database: extensions and updates 2013. / Nucleic Acids Res 2013, 41:D64-D69. CrossRef
    32. Kent WJ: BLAT鈥搕he BLAST-like alignment tool. / Genome Res 2002, 12:656鈥?64.
    33. Cancer Genome Hub - UC Santa Cruz https://cghub.ucsc.edu/
    34. Kalyana-Sundaram S, Shankar S, Deroo S, Iyer MK, Palanisamy N, Chinnaiyan AM, Kumar-Sinha C: Gene fusions associated with recurrent amplicons represent a class of passenger aberrations in breast cancer. / Neoplasia 2012, 14:702鈥?08.
    35. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, / et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. / Cancer Cell 2010, 17:98鈥?10. CrossRef
    36. The cancer genome atlas - data portal https://tcga-data.nci.nih.gov/tcga/
    37. Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, Layer RM, Quinlan AR, Hall IM: Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. / Genome Res 2013, 23:762鈥?76. CrossRef
    38. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, / et al.: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. / Cancer Discov 2012, 2:401鈥?04. CrossRef
    39. Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, Johnson LA, Robinson J, Verhaak RG, Sougnez C, / et al.: Integrative analysis of the melanoma transcriptome. / Genome Res 2010, 20:413鈥?27. CrossRef
    40. Greco A, Miranda C, Pierotti MA: Rearrangements of NTRK1 gene in papillary thyroid carcinoma. / Mol Cell Endocrinol 2010, 321:44鈥?9. CrossRef
    41. Giacomini CP, Sun S, Varma S, Shain AH, Giacomini MM, Balagtas J, Sweeney RT, Lai E, Del Vecchio CA, Forster AD, / et al.: Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. / PLoS Genet 2013, 9:e1003464. CrossRef
    42. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, / et al.: ROS1 rearrangements define a unique molecular class of lung cancers. / J Clin Oncol 2012, 30:863鈥?70. CrossRef
    43. Cho J, Pastorino S, Zeng Q, Xu X, Johnson W, Vandenberg S, Verhaak R, Cherniack AD, Watanabe H, Dutt A, / et al.: Glioblastoma-derived epidermal growth factor receptor carboxyl-terminal deletion mutants are transforming and are sensitive to EGFR-directed therapies. / Cancer Res 2011, 71:7587鈥?596. CrossRef
    44. Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, Lui WM, Fung CF, Wong TS, Leung GK: A long Non-coding RNA signature in glioblastoma multiforme predicts survival. / Neurobiol Dis 2013, 58:123鈥?31. CrossRef
    45. Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y: Long non-coding RNA: a new player in cancer. / J Hematol Oncol 2013, 6:37. CrossRef
    46. Zheng S, Fu J, Vegesna R, Mao Y, Heathcock LE, Torres-Garcia W, Ezhilarasan R, Wang S, McKenna A, Chin L, / et al.: A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. / Genes Dev 2013, 27:1462鈥?472. CrossRef
    47. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, Decarolis PL, Shah K, Socci ND, Weir BA, Ho A, / et al.: Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. / Nat Genet 2010,42(8):715鈥?21. / Epub 2010 Jul 4 2010 CrossRef
    48. Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, Palanisamy N, Chinnaiyan AM: Induced chromosomal proximity and gene fusions in prostate cancer. / Science 2009, 326:1230. CrossRef
    49. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. / Bioinformatics 2010, 26:841鈥?42. CrossRef
    50. Chase A, Ernst T, Fiebig A, Collins A, Grand F, Erben P, Reiter A, Schreiber S, Cross NC: TFG, a target of chromosome translocations in lymphoma and soft tissue tumors, fuses to GPR128 in healthy individuals. / Haematologica 2010, 95:20鈥?6. CrossRef
  • 作者单位:Nameeta Shah (18)
    Michael Lankerovich (18)
    Hwahyung Lee (18)
    Jae-Geun Yoon (18)
    Brett Schroeder (18)
    Greg Foltz (18)

    18. The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
  • ISSN:1471-2164
文摘
Background RNA-seq has spurred important gene fusion discoveries in a number of different cancers, including lung, prostate, breast, brain, thyroid and bladder carcinomas. Gene fusion discovery can potentially lead to the development of novel treatments that target the underlying genetic abnormalities. Results In this study, we provide comprehensive view of gene fusion landscape in 185 glioblastoma multiforme patients from two independent cohorts. Fusions occur in approximately 30-50% of GBM patient samples. In the Ivy Center cohort of 24 patients, 33% of samples harbored fusions that were validated by qPCR and Sanger sequencing. We were able to identify high-confidence gene fusions from RNA-seq data in 53% of the samples in a TCGA cohort of 161 patients. We identified 13 cases (8%) with fusions retaining a tyrosine kinase domain in the TCGA cohort and one case in the Ivy Center cohort. Ours is the first study to describe recurrent fusions involving non-coding genes. Genomic locations 7p11 and 12q14-15 harbor majority of the fusions. Fusions on 7p11 are formed in focally amplified EGFR locus whereas 12q14-15 fusions are formed by complex genomic rearrangements. All the fusions detected in this study can be further visualized and analyzed using our website: http://ivygap.swedish.org/fusions. Conclusions Our study highlights the prevalence of gene fusions as one of the major genomic abnormalities in GBM. The majority of the fusions are private fusions, and a minority of these recur with low frequency. A small subset of patients with fusions of receptor tyrosine kinases can benefit from existing FDA approved drugs and drugs available in various clinical trials. Due to the low frequency and rarity of clinically relevant fusions, RNA-seq of GBM patient samples will be a vital tool for the identification of patient-specific fusions that can drive personalized therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700