Epigenomic modification in rice controls meiotic recombination and segregation distortion
详细信息    查看全文
  • 作者:Yoshiki Habu (1)
    Tsuyu Ando (1)
    Sachie Ito (2)
    Kiyotaka Nagaki (3)
    Naoki Kishimoto (1)
    Fumio Taguchi-Shiobara (1)
    Hisataka Numa (1)
    Katsushi Yamaguchi (4)
    Shuji Shigenobu (4)
    Minoru Murata (3)
    Tetsuo Meshi (5)
    Masahiro Yano (1) (6)

    1. Agrogenomics Research Center
    ; National Institute of Agrobiological Sciences ; Kannondai 2-1-2 ; Tsukuba ; 305-8602 ; Japan
    2. Institute of Society for Techno-Innovation of Agriculture
    ; Forestry ; and Fisheries ; Tsukuba ; 305-0854 ; Japan
    3. Institute of Plant Science and Resources
    ; Okayama University ; Kurashiki ; 710-0046 ; Japan
    4. NIBB Core Research Facilities
    ; National Institute for Basic Biology ; Okaszaki ; 444-8585 ; Japan
    5. Division of Plant Sciences
    ; National Institute of Agrobiological Sciences ; Tsukuba ; 305-8602 ; Japan
    6. NARO Institute of Crop Science
    ; Tsukuba ; 305-8518 ; Japan
  • 关键词:DECREASE IN DNA METHYLATION1 ; Meiotic recombination ; Rice ; Segregation distortion
  • 刊名:Molecular Breeding
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:35
  • 期:4
  • 全文大小:305 KB
  • 参考文献:1. Bernatavichute, YV, Zhang, X, Cokus, S, Pellegrini, M, Jacobsen, SE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG methylation in Arabidopsis thaliana. PLoS ONE 3: pp. e3156 CrossRef
    2. Black, BE, Bassett, EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20: pp. 91-100 CrossRef
    3. B眉hler, M, Gasser, SM (2009) Silent chromatin at the middle and ends: lessons from yeasts. EMBO J 28: pp. 2149-2161 CrossRef
    4. Burt, A, Trivers, R (2006) Genes in conflict. The biology of selfish genetic elements. Belknap Press, Cambridge
    5. Colom茅-Tatch茅, M, Cortijo, S, Wardenaar, R (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci USA 109: pp. 16240-16245 CrossRef
    6. Copenhaver, GP, Nickel, K, Kuromori, T (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286: pp. 2468-2474 CrossRef
    7. Folco, HD, PidouxAL, Urano T, Allshire, RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319: pp. 94-97 CrossRef
    8. Fukagawa, T, Nogami, M, Yoshikawa, M, Ikeno, M, Okazaki, T, Tagami, Y, Nakayama, T, Oshimura, M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Struc Biol 6: pp. 784-791
    9. Gendrel, AV, Lippman, Z, Yordan, C, Colot, V, Martienssen, RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297: pp. 1871-1873 CrossRef
    10. Harushima, Y, Kurata, N, Yano, M, Nagamura, Y, Sasaki, T, Minobe, Y, Nakagahra, M (1996) Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet 92: pp. 145-150 CrossRef
    11. Higo, H, Tahir, M, Takashima, K (2012) DDM1 (Decrease in DNA Methylation) genes in rice (Oryza sativa). Mol Genet Genomics 287: pp. 785-792 CrossRef
    12. Lister, R, O鈥橫alley, RC, Tonti-Filippini, J, Gregory, BD, Berry, CC, Millar, AH, Ecker, JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133: pp. 523-536 CrossRef
    13. Lyttle, TW (1991) Segregation distorters. Annu Rev Genet 25: pp. 511-557 CrossRef
    14. Martienz-Peres, E, Moore, G (2008) To check or not check? The application of meiotic studies to plant breeding. Curr Opin Plant Biol 11: pp. 222-227 CrossRef
    15. Melamed-Bessudo, C, Levy, AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci USA 109: pp. E981-E988 CrossRef
    16. Mirouze, M, Lieberman-Lazarovich, M, Aversano, R, Bucher, E, Nicolet, J, Reinders, J, Paszkowski, J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci USA 109: pp. 5880-5885 CrossRef
    17. Nagaki, K, Cheng, Z, Ouyang, S, Talbert, PB, Kim, M, Jones, KM, Henikoff, S, Buell, CR, Jiang, J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36: pp. 138-145 CrossRef
    18. Numa, H, Kim, JM, Matsui, A (2010) Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana. EMBO J 29: pp. 352-362 CrossRef
    19. Perrella, G, Consiglio, MF, Aiese-Cigliano, R, Cremona, G, Sanchez-Moran, E, Barra, L, Errico, A, Bressan, RA, Franklin, FC, Conicella, C (2010) Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant J 62: pp. 796-806 CrossRef
    20. Rhoades, MM (1942) Preferential segregation in maize. Genetics 27: pp. 395-407
    21. Saffery, R, Sumer, H, Hassan, S, Wong, LH, Craig, JM, Todoroki, K, Anderson, M, Stafford, A, Choo, KHA (2002) Transcription within a functional human centromere. Mol Cell 12: pp. 509-516 CrossRef
    22. Satoh, K, Doi, K, Nagata, T (2007) Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray. PLoS ONE 2: pp. e1235 CrossRef
    23. Talbert, PB, Henikoff, S (2010) Centromeres convert but don鈥檛 cross. PLoS Biol 8: pp. e1000326 CrossRef
    24. Vongs, A, Kakutani, T, Martienssen, RA, Richards, EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260: pp. 1926-1928 CrossRef
    25. Wijnker, E, Jong, H (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci 13: pp. 640-646 CrossRef
    26. Wu, C-I, Lyttle, TW, Wu, M-L, Lin, G-F (1988) Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell 54: pp. 179-189 CrossRef
    27. Wu, J, Mizuno, H, Hayashi-Tsugane, M (2003) Physical maps and recombination frequency of six rice chromosomes. Plant J 36: pp. 720-730 CrossRef
    28. Yan, H, Jin, W, Nagaki, K, Tian, S, Ouyang, S, Buell, CR, Talbert, PB, Henikoff, S, Jiang, J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17: pp. 3227-3238 CrossRef
    29. Yan, H, Talbert, PB, Lee, HR, Jett, J, Henikoff, S, Chen, F, Jiang, J (2008) Intergenic location of rice centromeric chromatin. PLoS Biol 6: pp. e286 CrossRef
    30. Yelina, NE, Choi, K, Chelysheva, L (2012) Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 8: pp. e1002844 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9788
文摘
The low frequency of meiotic recombination in chromosomal regions other than hotspots is a general obstacle to efficient breeding. A number of active genes are present in recombination-repressed centromeric regions in higher eukaryotes, suggesting that suppression of meiotic recombination prevents shuffling of genes within a centromeric region. In this study, by using an inter-subspecific cross of Oryza sativa L., we show that modification of inactive chromatin states by either genetic or chemical inhibition of chromatin modifying proteins induced changes in both the position of meiotic recombination and, unexpectedly, the pattern of segregation distortion of parental alleles. Antisense knockdown of rice homologues of DECREASE IN DNA METHYLATION1, which is required for the maintenance of heterochromatin in Arabidopsis thaliana, induced a recombination hotspot in a centromeric region accompanied by a steep increase in the proportion of heterozygotes. Our results describe a previously undocumented phenomenon in which artificial chromatin modification could be used to change the pattern of segregation distortion in rice and open up novel possibilities for efficient crop breeding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700