Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.)
详细信息    查看全文
  • 作者:Caitlin R Ross (1)
    Dominick S DeFelice (2)
    Greg J Hunt (3)
    Kate E Ihle (4)
    Gro V Amdam (4) (5)
    Olav Rueppell (2)

    1. Department of Computer Sciences
    ; The University of North Carolina at Greensboro ; Greensboro ; NC ; 27402 ; USA
    2. Department of Biology
    ; 312 Eberhart Building ; The University of North Carolina at Greensboro ; 321 McIver Street ; Greensboro ; NC ; 27402 ; USA
    3. Department of Entomology
    ; Purdue University ; West Lafayette ; IN ; 47907 ; USA
    4. School of Life Sciences
    ; Arizona State University ; Tempe ; AZ ; 85287 ; USA
    5. Department of Chemistry
    ; Biotechnology and Food Science ; Norwegian University of Life Sciences ; 1432 ; Aas ; Norway
  • 关键词:Meiotic recombination ; Genome evolution ; Red queen hypothesis ; Hotspots ; GC content ; Sociality ; Comparative genomics
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,842 KB
  • 参考文献:1. Massy, B (2013) Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 47: pp. 563-599 CrossRef
    2. Borodin, PM, Karamysheva, TV, Belonogova, NM, Torgasheva, AA, Rubtsov, NB, Searle, JB (2008) Recombination map of the common shrew, Sorex araneus (Eulipotyphla, Mammalia). Genetics 178: pp. 621-632 CrossRef
    3. Segura, J, Ferretti, L, Ramos-Onsins, S, Capilla, L, Farre, M, Reis, F (2013) Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proc Biol Sci 280: pp. 20131945 CrossRef
    4. Roeder, GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11: pp. 2600-2621 CrossRef
    5. Lynch, M (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23: pp. 450-468 CrossRef
    6. Dumont, BL, Payseur, BA (2008) Evolution of the genomic rate of recombination in mammals. Evolution 62: pp. 276-294 CrossRef
    7. Comeron, JM, Ratnappan, R, Bailin, S (2012) The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 8: pp. e1002905 CrossRef
    8. Coop, G, Wen, XQ, Ober, C, Pritchard, JK, Przeworski, M (2008) High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319: pp. 1395-1398 CrossRef
    9. Beye, M, Gattermeier, I, Hasselmann, M, Gempe, T, Schioett, M, Baines, JF (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16: pp. 1339-1344 CrossRef
    10. Meznar, ER, Gadau, J, Koeniger, N, Rueppell, O (2010) Comparative linkage mapping suggests a high recombination rate in all honey bees. J Hered 101: pp. S118-S126 CrossRef
    11. Solignac, M, Mougel, F, Vautrin, D, Monnerot, M, Cornuet, JM (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol 8: pp. R66 CrossRef
    12. Wilfert, L, Gadau, J, Schmid-Hempel, P (2007) Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98: pp. 189-197 CrossRef
    13. Sirvio, A, Johnston, JS, Wenseleers, T, Pamilo, P (2011) A high recombination rate in eusocial Hymenoptera: evidence from the common wasp Vespula vulgaris. BMC Genet 12: pp. 95 CrossRef
    14. Gadau, J, Page, RE, Werren, JH, Schmid-Hempel, P (2000) Genome organization and social evolution in hymenoptera. Naturwissenschaften 87: pp. 87-89 CrossRef
    15. Sirvio, A, Gadau, J, Rueppell, O, Lamatsch, D, Boomsma, JJ, Pamilo, P (2006) High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior. J Evol Biol 19: pp. 1475-1485 CrossRef
    16. Rueppell, O, Meier, S, Deutsch, R (2012) Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures. PLoS One 7: pp. e47220 CrossRef
    17. Sherman, PW (1979) Insect chromosome numbers and eusociality. Am Nat 113: pp. 925-935 CrossRef
    18. Templeton, AR (1979) Chromosome number, quantitative genetics and eusociality. Am Nat 113: pp. 937-941 CrossRef
    19. Kent, CF, Zayed, A (2013) Evolution of recombination and genome structure in eusocial insects. Commun Integr Biol 6: pp. e22919 CrossRef
    20. Weinstock, GM, Robinson, GE, Gibbs, RA, Worley, KC, Evans, JD, Maleszka, R (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443: pp. 931-949 CrossRef
    21. Elsik, CG, Worley, KC, Bennett, AK, Beye, M, Camara, F, Childers, CP (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics 15: pp. 86 CrossRef
    22. Adrian, AB, Comeron, JM (2013) The Drosophila early ovarian transcriptome provides insight to the molecular causes of recombination rate variation across genomes. BMC Genomics 14: pp. 794 CrossRef
    23. Wahls, WP, Davidson, MK (2012) New paradigms for conserved, multifactorial, cis-acting regulation of meiotic recombination. Nucleic Acids Res 40: pp. 9983-9989 CrossRef
    24. Berg, IL, Neumann, R, Lam, KW, Sarbajna, S, Odenthal-Hesse, L, May, CA (2010) PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat Genet 42: pp. 859-863 CrossRef
    25. Mougel, F, Poursat, MA, Beaume, N, Vautrin, D, Solignac, M (2014) High-resolution linkage map for two honeybee chromosomes: the hotspot quest. Mol Genet Genomics 289: pp. 11-24 CrossRef
    26. Bessoltane, N, Toffano-Nioche, C, Solignac, M, Mougel, F (2012) Fine scale analysis of crossover and non-crossover and detection of recombination sequence motifs in the honeybee (Apis mellifera). PLoS One 7: pp. e36229 CrossRef
    27. Ubeda, F, Wilkins, JF (2011) The Red Queen theory of recombination hotspots. J Evol Biol 24: pp. 541-553 CrossRef
    28. Whitfield, CW, Behura, SK, Berlocher, SH, Clark, AG, Johnston, JS, Sheppard, WS (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science 314: pp. 642-645 CrossRef
    29. Ross C, DeFelice D, Hunt GJ, Ihle K, Rueppell O. A comparison of multiple genome-wide recombination maps in / Apis mellifera. Topics from the 8th Annual UNCG Regional Mathematics and Statistics Conference 2014: in press.
    30. Arechavaleta-Velasco, ME, Alcala-Escamilla, K, Robles-Rios, C, Tsuruda, JM, Hunt, GJ (2012) Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites. PLoS One 7: pp. e47269 CrossRef
    31. Tsuruda, JM, Harris, JW, Bourgeois, L, Danka, RG, Hunt, GJ (2012) High-resolution linkage analyses to identify genes that influence Varroa Sensitive Hygiene behavior in honey bees. PLoS One 7: pp. e48276 CrossRef
    32. Ball, AD, Stapley, J, Dawson, DA, Birkhead, TR, Burke, T, Slate, J (2010) A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics 11: pp. 218 CrossRef
    33. Kennedy, GC, Matsuzaki, H, Dong, S, Liu, WM, Huang, J, Liu, G (2003) Large-scale genotyping of complex DNA. Nat Biotechnol 21: pp. 1233-1237 CrossRef
    34. Pessia, E, Popa, A, Mousset, S, Rezvoy, C, Duret, L, Marais, GA (2012) Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol Evol 4: pp. 675-682 CrossRef
    35. Robinson, MC, Stone, EA, Singh, ND (2014) Population genomic analysis reveals no evidence for gc-biased gene conversion in Drosophila melanogaster. Mol Biol Evol 31: pp. 425-433 CrossRef
    36. Kent, CF, Minaei, S, Harpur, BA, Zayed, A (2012) Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc Natl Acad Sci U S A 109: pp. 18012-18017 CrossRef
    37. Nicolas, A (1998) Relationship between transcription and initiation of meiotic recombination: toward chromatin accessibility. Proc Natl Acad Sci U S A 95: pp. 87-89 CrossRef
    38. Pan, J, Sasaki, M, Kniewel, R, Murakami, H, Blitzblau, HG, Tischfield, SE (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144: pp. 719-731 CrossRef
    39. Benet, A, Molla, G, Azorin, F (2000) d(GA x TC)(n) microsatellite DNA sequences enhance homologous DNA recombination in SV40 minichromosomes. Nucleic Acids Res 28: pp. 4617-4622 CrossRef
    40. Illingworth, CJR, Parts, L, Bergstr枚m, A, Liti, G, Mustonen, V (2013) Inferring genome-wide recombination landscapes from advanced intercross lines: application to yeast crosses. PLoS One 8: pp. e62266 CrossRef
    41. Heil, CSS, Noor, MAF (2012) Zinc finger binding motifs do not explain recombination rate variation within or between species of Drosophila. PLoS One 7: pp. e45055 CrossRef
    42. Page, RE, Fondrk, MK (1995) The effects of colony level selection on the social organization of honey bee (Apis mellifera L) colonies - colony level components of pollen hoarding. Behav Ecol Sociobiol 36: pp. 135-144 CrossRef
    43. Ihle KE, Rueppell O, Page RE, Amdam GV. QTL for ovary size and juvenile hormone response to Vg-RNAi knockdown. J Hered. 2015: online: doi:10.1093/jhered/esu086.
    44. Rueppell, O, Metheny, JD, Linksvayer, TA, Fondrk, MK, Page, RE, Amdam, GV (2011) Genetic architecture of ovary size and asymmetry in European honeybee workers. Heredity 106: pp. 894-903 CrossRef
    45. Graham, AM, Munday, MD, Kaftanoglu, O, Page, RE, Amdam, GV, Rueppell, O (2011) Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.). BMC Evol Biol 11: pp. 95 CrossRef
    46. Johnson, M, Zaretskaya, I, Raytselis, Y, Merezhuk, Y, McGinnis, S, Madden, TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36: pp. W5-9 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. Results Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. Conclusions The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700