Epigenetic control of meiotic recombination in plants
详细信息    查看全文
  • 作者:Natasha Yelina (1)
    Patrick Diaz (1)
    Christophe Lambing (1)
    Ian R. Henderson (1)

    1. Department of Plant Sciences
    ; University of Cambridge ; Cambridge ; CB2 3EA ; UK
  • 关键词:meiosis ; recombination ; epigenetic ; crossover ; chromatin
  • 刊名:Science China Life Sciences
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:58
  • 期:3
  • 页码:223-231
  • 全文大小:774 KB
  • 参考文献:1. Villeneuve, AM, Hillers, KJ (2001) Whence meiosis?. Cell 106: pp. 647-650
    2. Wilkins, AS, Holliday, R (2009) The evolution of meiosis from mitosis. Genetics 181: pp. 3-12
    3. Cavalier-Smith, T (2002) Origins of the machinery of recombination and sex. Heredity (Edinb) 88: pp. 125-141
    4. Barton, NH, Charlesworth, B (1998) Why sex and recombination?. Science 281: pp. 1986-1990
    5. Hamilton, WD (2001) Narrow Roads of Gene Land: the Collected Papers of W.D Hamilton. Volume 2 The Evolution of Sex. Oxford University Press, Oxford
    6. Higgins, JD, Osman, K, Jones, GH, Franklin, FCH (2014) Factors underlying restricted crossover localization in barley meiosis. Annu Rev Genet 48: pp. 29-47
    7. Keeney, S, Giroux, CN, Kleckner, N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: pp. 375-384
    8. Bergerat, A, Massy, B, Gadelle, D, Varoutas, PC, Nicolas, A, Forterre, P (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386: pp. 414-417
    9. Pan, J, Sasaki, M, Kniewel, R, Murakami, H, Blitzblau, HG, Tischfield, SE, Zhu, X, Neale, MJ, Jasin, M, Socci, ND, Hochwagen, A, Keeney, S (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144: pp. 719-731
    10. Neale, MJ, Pan, J, Keeney, S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436: pp. 1053-1057
    11. Garcia, V, Phelps, SE, Gray, S, Neale, MJ (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479: pp. 241-244
    12. Bishop, DK, Park, D, Xu, L, Kleckner, N (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69: pp. 439-456
    13. Shinohara, A, Ogawa, H, Ogawa, T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69: pp. 457-470
    14. Grelon, M, Vezon, D, Gendrot, G, Pelletier, G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20: pp. 589-600
    15. Couteau, F, Belzile, F, Horlow, C, Grandjean, O, Vezon, D, Doutriaux, MP (1999) Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. Plant Cell 11: pp. 1623-1634
    16. Youds, JL, Boulton, SJ (2011) The choice in meiosis-defining the factors that influence crossover or non-crossover formation. J Cell Sci 124: pp. 501-513
    17. McMahill, MS, Sham, CW, Bishop, DK (2007) Synthesis-dependent strand annealing in meiosis. PLoS Biol 5: pp. e299
    18. Keeney, S, Neale, MJ (2006) Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans 34: pp. 523-525
    19. Chelysheva, L, Vezon, D, Chambon, A, Gendrot, G, Pereira, L, Lemhemdi, A, Vrielynck, N, Guin, S, Novatchkova, M, Grelon, M (2012) The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet 8: pp. e1002799
    20. Ferdous, M, Higgins, JD, Osman, K, Lambing, C, Roitinger, E, Mechtler, K, Armstrong, SJ, Perry, P, Pradillo, M, Cunado, N, Franklin, FC (2012) Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLoS Genet 8: pp. e1002507
    21. Giraut, L, Falque, M, Drouaud, J, Pereira, L, Martin, OC, M茅zard, C (2011) Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet 7: pp. e1002354
    22. Salom茅, PA, Bomblies, K, Fitz, J, Laitinen, RA, Warthmann, N, Yant, L, Weigel, D (2012) The recombination landscape in Arabidopsis thaliana F2 populations. Heredity 108: pp. 447-455
    23. Lynn, A, Soucek, R, B枚rner, GV (2007) ZMM proteins during meiosis: crossover artists at work. Chromosome Res 15: pp. 591-605
    24. Muller, HJ (1916) The mechanism of crossing-over. Am Nat 50: pp. 193-221
    25. Sturtevant, AH (1915) The behavior of the chromosomes as studied through linkage. Zeitschrift fur Indukt. Abstammungs und Vererbungslehre 13: pp. 234-287
    26. Copenhaver, GP, Housworth, EA, Stahl, FW (2002) Crossover interference in Arabidopsis. Genetics 160: pp. 1631-1639
    27. Chelysheva, L, Grandont, L, Vrielynck, N, Guin, S, Mercier, R, Grelon, M (2010) An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenet Genome Res 129: pp. 143-153
    28. Chelysheva, L, Gendrot, G, Vezon, D, Doutriaux, MP, Mercier, R, Grelon, M (2007) Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana. PLoS Genet 3: pp. e83
    29. Chen, C, Zhang, W, Timofejeva, L, Gerardin, Y, Ma, H (2005) The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation. Plant J 43: pp. 321-334
    30. Higgins, JD, Armstrong, SJ, Franklin, FCH, Jones, GH (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18: pp. 2557-2570
    31. Higgins, JD, Vignard, J, Mercier, R, Pugh, AG, Franklin, FC, Jones, GH (2008) AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. Plant J 55: pp. 28-39
    32. Macaisne, N, Novatchkova, M, Peirera, L, Vezon, D, Jolivet, S, Froger, N, Chelysheva, L, Grelon, M, Mercier, R (2008) SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers. Curr Biol 18: pp. 1432-1437
    33. Mercier, R, Jolivet, S, Vezon, D, Huppe, E, Chelysheva, L, Giovanni, M, Noqu茅, F, Doutriaux, MP, Horlow, C, Grelon, M, M茅zard, C (2005) Two meiotic crossover classes cohabit in Arabidopsis: one is dependent on MER3,whereas the other one is not. Curr Biol 15: pp. 692-701
    34. Wijeratne, AJ, Chen, C, Zhang, W, Timofejeva, L, Ma, H (2006) The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol Biol Cell 17: pp. 1331-1343
    35. Higgins, JD, Sanchez-Moran, E, Armstrong, SJ, Jones, GH, Franklin, FCH (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19: pp. 2488-2500
    36. Higgins, JD, Buckling, EF, Franklin, FCH, Jones, GH (2008) Expression and functional analysis of AtMUS81 in Arabidopsis meiosis reveals a role in the second pathway of crossing-over. Plant J 54: pp. 152-162
    37. Berchowitz, LE, Francis, KE, Bey, AL, Copenhaver, GP (2007) The role of AtMUS81 in interference-insensitive crossovers in A. thaliana. PLoS Genet 3: pp. e132
    38. Crismani, W, Girard, C, Froger, N, Pradillo, M, Santos, JL, Chelysheva, L, Copenhaver, GP, Horlow, C, Mercier, R (2012) FANCM limits meiotic crossovers. Science 336: pp. 1588-1590
    39. Knoll, A, Higgins, JD, Seeliger, K, Reha, SJ, Dangel, NJ, Bauknecht, M, Schr枚pfer, S, Franklin, FC, Puchta, H (2012) The Fanconi anemia ortholog FANCM ensures ordered homologous recombination in both somatic and meiotic cells in Arabidopsis. Plant Cell 24: pp. 1448-1464
    40. Kauppi, L, Jeffreys, AJ, Keeney, S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5: pp. 413-424
    41. Law, JA, Jacobsen, SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11: pp. 204-220
    42. Henderson, IR, Jacobsen, SE (2007) Epigenetic inheritance in plants. Nature 447: pp. 418-424
    43. Yelina, NE, Choi, K, Chelysheva, L, Macaulay, M, Snoo, B, Wijnker, E, Miller, N, Drouaud, J, Grelon, M, Copenhaver, GP, Mezard, C, Kelly, KA, Henderson, IR (2012) Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet 8: pp. e1002844
    44. Choi, K, Zhao, X, Kelly, KA, Venn, O, Higgins, JD, Yelina, NE, Hardcastle, TJ, Ziolkowski, PA, Copenhaver, GP, Franklin, FC, McVean, G, Henderson, IR (2013) Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet 45: pp. 1327-1336
    45. Wijnker, E, Velikkakam, JG, Ding, J, Becker, F, Klasen, JR, Rawat, V, Rowan, BA, Jong, DF, Snoo, CB, Zapata, L, Huettel, B, Jong, H, Ossowski, S, Weigel, D, Koornneef, M, Keurentjes, JJ, Schneeberger, K (2013) The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. eLIFE 2: pp. e01426
    46. Melamed-Bessudo, C, Levy, AA (2012) Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc Natl Acad Sci USA 109: pp. E981-988
    47. Colom茅-Tatch茅, M, Cortijo, S, Wardenaar, R, Morgado, L, Lahouze, B, Sarazin, A, Etcheverry, M, Martin, A, Feng, S, Duvernois-Berthet, E, Labadie, K, Wincker, P, Jacobsen, SE, Jansen, RC, Colot, V, Johannes, F (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci USA 109: pp. 16240-16245
    48. Mirouze, M, Lieberman-Lazarovich, M, Aversano, R, Bucher, E, Nicolet, J, Reinders, J, Paszkowski, J (2012) Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc Natl Acad Sci USA 109: pp. 5880-5885
    49. Gore, MA, Chia, JM, Elshire, RJ, Sun, Q, Ersoz, ES, Hurwitz, BL, Peiffer, JA, McMullen, MD, Grills, GS, Ross-Ibarra, J, Ware, DH, Buckler, ES (2009) A first-generation haplotype map of maize. Science 326: pp. 1115-1117
    A physical, genetic and functional sequence assembly of the barley genome. Nature 491: pp. 711-716
    The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: pp. 635-641
    50. Wei, F, Zhang, J, Zhou, S, He, R, Schaeffer, M, Collura, K, Kudrna, D, Faga, BP, Wissotski, M, Golser, W, Rock, SM, Graves, TA, Fulton, RS, Coe, E, Schnable, PS, Schwartz, DC, Ware, D, Clifton, SW, Wilson, RK, Wing, RA (2009) The physical and genetic framework of the maize B73 genome. PLoS Genet 5: pp. e1000715
    A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345: pp. 1251788-1-1251788-11
    51. Dooner, HK, Mart铆nez-F茅rez, IM (1997) Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell 9: pp. 1633-1646
    52. Dooner, HK, He, L (2008) Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell 20: pp. 249-258
    53. Fu, H, Zheng, Z, Dooner, HK (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc Natl Acad Sci USA 99: pp. 1082-1087
    54. Fu, H, Park, W, Yan, X, Zheng, Z, Shen, B, Dooner, HK (2001) The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci USA 98: pp. 8903-8908
    55. Liu, S, Yeh, CT, Ji, T, Ying, K, Wu, H, Tang, HM, Fu, Y, Nettleton, D, Schnable, PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5: pp. e1000733
    56. Yao, H, Zhou, Q, Li, J, Smith, H, Yandeau, M, Nikolau, BJ, Schnable, PS (2002) Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci USA 99: pp. 6157-6162
    57. Drouaud, J, Khademian, H, Giraut, L, Zanni, V, Bellalou, S, Henderson, IR, Falque, M, M茅zard, C (2013) Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet 9: pp. e1003922
    58. Hellsten, U, Wright, KM, Jenkins, J, Shu, S, Yuan, Y, Wessler, SR, Schmutz, J, Willis, JH, Rokhsar, DS (2013) Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc Natl Acad Sci USA 110: pp. 19478-19482
    59. Venters, BJ, Pugh, BF (2009) How eukaryotic genes are transcribed. Crit Rev Biochem Mol Biol 44: pp. 117-141
    60. Chodavarapu, RK, Feng, S, Bernatavichute, YV, Chen, PY, Stroud, H, Yu, Y, Hetzel, JA, Kuo, F, Kim, J, Cokus, SJ, Casero, D, Bernal, M, Huijser, P, Clark, AT, Kr盲mer, U, Merchant, SS, Zhang, X, Jacobsen, SE, Pellegrini, M (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466: pp. 388-392
    61. Zilberman, D, Coleman-Derr, D, Ballinger, T, Henikoff, S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456: pp. 125-129
    62. Coleman-Derr, D, Zilberman, D (2012) Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8: pp. e1002988
    63. Kumar, SV, Wigge, PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140: pp. 136-147
    64. Zhang, X, Bernatavichute, YV, Cokus, S, Pellegrini, M, Jacobsen, SE (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10: pp. R62
    65. Wu, TC, Lichten, M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263: pp. 515-518
    66. Borde, V, Robine, N, Lin, W, Bonfils, S, G茅li, V, Nicolas, A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28: pp. 99-111
    67. Acquaviva, L, Sz茅kv枚lgyi, L, Dichtl, B, Dichtl, BS, Roche Saint-Andr茅, C, Nicolas, A, G茅li, V (2013) The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 339: pp. 215-218
    68. Sommermeyer, V, B茅neut, C, Chaplais, E, Serrentino, ME, Borde, V (2013) Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol Cell 49: pp. 43-54
    69. Sollier, J, Lin, W, Soustelle, C, Suhre, K, Nicolas, A, G茅li, V, Roche Saint-Andr茅, C (2004) Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression. EMBO J 23: pp. 1957-1967
    70. Kleckner, N (2006) Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115: pp. 175-194
    71. Panizza, S, Mendoza, MA, Berlinger, M, Huang, L, Nicolas, A, Shirahige, K, Klein, F (2011) Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146: pp. 372-383
    72. Blat, Y, Protacio, RU, Hunter, N, Kleckner, N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111: pp. 791-802
    73. Perrella, G, Consiglio, MF, Aiese-Cigliano, R, Cremona, G, Sanchez-Moran, E, Barra, L, Errico, A, Bressan, RA, Franklin, FC, Conicella, C (2010) Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant J 62: pp. 796-806
    74. Jeffreys, AJ, Allen, MJ, Armour, JAL, Collick, A, Dubrova, Y, Fretwell, N, Guram, T, Jobling, M, May, CA, Neil, DL, Neumann, R (1995) Mutation processes at human minisatellites. Electrophoresis 16: pp. 1577-1585
    75. Paape, T, Zhou, P, Branca, A, Briskine, R, Young, N, Tiffin, P (2012) Fine-scale population recombination rates, hotspots, and correlates of recombination in the Medicago truncatula genome. Genome Biol Evol 4: pp. 726-737
    76. Cao, J, Schneeberger, K, Ossowski, S, G眉nther, T, Bender, S, Fitz, J, Koenig, D, Lanz, C, Stegle, O, Lippert, C, Wang, X, Ott, F, M眉ller, J, Alonso-Blanco, C, Borgwardt, K, Schmid, KJ, Weigel, D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: pp. 956-963
    77. Duret, L, Galtier, N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10: pp. 285-311
    78. Baudat, F, Buard, J, Grey, C, Fledel-Alon, A, Ober, C, Przeworski, M, Coop, G, Massy, B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327: pp. 836-840
    79. Myers, S, Bowden, R, Tumian, A, Bontrop, RE, Freeman, C, MacFie, TS, McVean, G, Donnelly, P (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327: pp. 876-879
    80. Parvanov, ED, Petkov, PM, Paigen, K (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 327: pp. 835
    81. Brick, K, Smagulova, F, Khil, P, Camerini-Otero, RD, Petukhova, GV (2012) Genetic recombination is directed away from functional genomic elements in mice. Nature 485: pp. 642-645
    82. Oliver, PL, Goodstadt, L, Bayes, JJ, Birtle, Z, Roach, KC, Phadnis, N, Beatson, SA, Lunter, G, Malik, HS, Ponting, CP (2009) Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet 5: pp. e1000753
    83. Haag, JR, Pikaard, CS (2011) Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 12: pp. 483-492
    84. Zhong, X, Hale, CJ, Law, JA, Johnson, LM, Feng, S, Tu, A, Jacobsen, SE (2012) DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat Struct Mol Biol 19: pp. 870-875
    85. Law, JA, Du, J, Hale, CJ, Feng, S, Krajewski, K, Palanca, AM, Strahl, BD, Patel, DJ, Jacobsen, SE (2013) Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498: pp. 385-389
    86. Johnson, LM, Du, J, Hale, CJ, Bischof, S, Feng, S, Chodavarapu, RK, Zhong, X, Marson, G, Pellegrini, M, Segal, DJ, Patel, DJ, Jacobsen, SE (2014) SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507: pp. 124-128
    87. Lippman, Z, Gendrel, AV, Black, M, Vaughn, MW, Dedhia, N, McCombie, WR, Lavine, K, Mittal, V, May, B, Kasschau, KD, Carrington, JC, Doerge, RW, Colot, V, Martienssen, R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430: pp. 471-476
    88. Cokus, SJ, Feng, S, Zhang, X, Chen, Z, Merriman, B, Haudenschild, CD, Pradhan, S, Nelson, SF, Pellegrini, M, Jacobsen, SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: pp. 215-219
    89. Saze, H, Shiraishi, A, Miura, A, Kakutani, T (2008) Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 319: pp. 462-465
    90. Zhang, X, Yazaki, J, Sundaresan, A, Cokus, S, Chan, SW, Chen, H, Henderson, IR, Shinn, P, Pellegrini, M, Jacobsen, SE, Ecker, JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126: pp. 1189-1201
    91. Copenhaver, GP, Nickel, K, Kuromori, T, Benito, MI, Kaul, S, Lin, X, Bevan, M, Murphy, G, Harris, B, Parnell, LD, McCombie, WR, Martienssen, RA, Marra, M, Preuss, D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286: pp. 2468-2474
    92. Lamb, NE, Sherman, SL, Hassold, TJ (2005) Effect of meiotic recombination on the production of aneuploid gametes in humans. Cytogenet Genome Res 111: pp. 250-255
    93. Maloisel, L, Rossignol, JL (1998) Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 12: pp. 1381-1389
    94. Kankel, MW, Ramsey, DE, Stokes, TL, Flowers, SK, Haag, JR, Jeddeloh, JA, Riddle, NC, Verbsky, ML, Richards, EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163: pp. 1109-1122
    95. Mathieu, O, Reinders, J, Caikovski, M, Smathajitt, C, Paszkowski, J (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130: pp. 851-862
    96. Singer, T, Yordan, C, Martienssen, RA (2001) Robertson鈥檚 Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene decrease in DNA Methylation (DDM1). Genes Dev 15: pp. 591-602
    97. Tariq, M, Saze, H, Probst, AV, Lichota, J, Habu, Y, Paszkowski, J (2003) Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci USA 100: pp. 8823-8827
    98. Vongs, A, Kakutani, T, Martienssen, RA, Richards, EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260: pp. 1926-1928
    99. Martini, E, Diaz, RL, Hunter, N, Keeney, S (2006) Crossover homeostasis in yeast meiosis. Cell 126: pp. 285-295
    100. Thacker, D, Mohibullah, N, Zhu, X, Keeney, S (2014) Homologue engagement controls meiotic DNA break number and distribution. Nature 510: pp. 241-246
    101. Komiya, R, Ohyanagi, H, Niihama, M, Watanabe, T, Nakano, M, Kurata, N, Nonomura, K (2014) Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J 78: pp. 385-397
    102. Nonomura, K, Morohoshi, A, Nakano, M, Eiguchi, M, Miyao, A, Hirochika, H, Kurata, N (2007) A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19: pp. 2583-2594
    103. Kleckner, N, Zickler, D, Jones, GH, Dekker, J, Padmore, R, Henle, J, Hutchinson, J (2004) A mechanical basis for chromosome function. Proc Natl Acad Sci USA 101: pp. 12592-12597
    104. Kim, KP, Weiner, BM, Zhang, L, Jordan, A, Dekker, J, Kleckner, N (2010) Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143: pp. 924-937
    105. Schwacha, A, Kleckner, N (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90: pp. 1123-1135
    106. Xu, L, Weiner, BM, Kleckner, N (1997) Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev 11: pp. 106-118
    107. Kugou, K, Fukuda, T, Yamada, S, Ito, M, Sasanuma, H, Mori, S, Katou, Y, Itoh, T, Matsumoto, K, Shibata, T, Shirahige, K, Ohta, K (2009) Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes. Mol Biol Cell 20: pp. 3064-3076
    108. Mao-Draayer, Y, Galbraith, AM, Pittman, DL, Cool, M, Malone, RE (1996) Analysis of meiotic recombination pathways in the yeast Saccharomyces cerevisiae. Genetics 144: pp. 71-86
    109. B枚rner, GV, Barot, A, Kleckner, N (2008) Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis. Proc Natl Acad Sci USA 105: pp. 3327-3332
    110. Deshong, AJ, Ye, AL, Lamelza, P, Bhalla, N (2014) A quality control mechanism coordinates meiotic prophase events to promote crossover assurance. PLoS Genet 10: pp. e1004291
    111. Dernburg, AF, McDonald, K, Moulder, G, Barstead, R, Dresser, M, Villeneuve, AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94: pp. 387-398
    112. Giroux, CN, Dresser, ME, Tiano, HF (1989) Genetic control of chromosome synapsis in yeast meiosis. Genome 31: pp. 88-94
    113. McKim, KS, Green-Marroquin, BL, Sekelsky, JJ, Chin, G, Steinberg, C, Khodosh, R, Hawley, RS (1998) Meiotic synapsis in the absence of recombination. Science 279: pp. 876-878
    114. Romanienko, PJ, Camerini-Otero, RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6: pp. 975-987
    115. Page, SL, Hawley, RS (2003) Chromosome choreography: the meiotic ballet. Science 301: pp. 785-789
    116. Libuda, DE, Uzawa, S, Meyer, BJ, Villeneuve, AM (2013) Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502: pp. 703-706
    117. Osman, K, Higgins, JD, Sanchez-Moran, E, Armstrong, SJ, Franklin, FCH (2011) Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol 190: pp. 523-544
    118. Sanchez-Moran, E, Santos, JL, Jones, GH, Franklin, FCH (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev 21: pp. 2220-2233
    119. Caryl, AP, Armstrong, SJ, Jones, GH, Franklin, FC (2000) A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma 109: pp. 62-71
    120. Armstrong, SJ, Caryl, AP, Jones, GH, Franklin, FCH (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115: pp. 3645-3655
    121. Cai, X, Dong, F, Edelmann, RE, Makaroff, CA (2003) The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116: pp. 2999-3007
    122. Bhatt, AM, Lister, C, Page, T, Fransz, P, Findlay, K, Jones, GH, Dickinson, HG, Dean, C (1999) The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J 19: pp. 463-472
    123. Bai, X, Peirson, BN, Dong, F, Xue, C, Makaroff, CA (1999) Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell 11: pp. 417-430
    124. Chelysheva, L, Diallo, S, Vezon, D, Gendrot, G, Vrielynck, N, Belcram, K, Rocques, N, M谩rquez-Lema, A, Bhatt, AM, Horlow, C, Mercier, R, M茅zard, C, Grelon, M (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118: pp. 4621-4632
    125. Lam, WS, Yang, X, Makaroff, CA (2005) Characterization of Arabidopsis thaliana SMC1 and SMC3: evidence that AtSMC3 may function beyond chromosome cohesion. J Cell Sci 118: pp. 3037-3048
    126. Glynn, EF, Megee, PC, Yu, HG, Mistrot, C, Unal, E, Koshland, DE, DeRisi, JL, Gerton, JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2: pp. E259
    127. Watanabe, Y (2005) Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol 17: pp. 590-595
    128. Buonomo, SB, Clyne, RK, Fuchs, J, Loidl, J, Uhlmann, F, Nasmyth, K (2000) Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103: pp. 387-398
    129. Kitajima, TS, Miyazaki, Y, Yamamoto, M, Watanabe, Y (2003) Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J 22: pp. 5643-5653
    130. Zamariola, L, Storme, N, Vannerum, K, Vandepoele, K, Armstrong, SJ, Franklin, FC, Geelen, D (2014) SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana. Plant J 77: pp. 782-794
    131. Cromer, L, Jolivet, S, Horlow, C, Chelysheva, L, Heyman, J, Jaeger, G, Koncz, C, Veylder, L, Mercier, R (2013) Centromeric cohesion is protected twice at meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis. Curr Biol 23: pp. 2090-2099
    132. Kitajima, TS, Kawashima, SA, Watanabe, Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427: pp. 510-517
    133. Hamant, O, Golubovskaya, I, Meeley, R, Fiume, E, Timofejeva, L, Schleiffer, A, Nasmyth, K, Cande, WZ (2005) A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 15: pp. 948-954
    134. Hollister, JD, Arnold, BJ, Svedin, E, Xue, KS, Dilkes, BP, Bomblies, K (2012) Genetic adaptation associated with genome-doubling in autotetr-aploid Arabidopsis arenosa. PLoS Genet 8: pp. e1003093
    135. Yant, L, Hollister, JD, Wright, KM, Arnold, BJ, Higgins, JD, Franklin, FC, Bomblies, K (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23: pp. 2151-2156
    136. Sun, Y, Ambrose, JH, Haughey, BS, Webster, TD, Pierrie, SN, Mu帽oz, DF, Wellman, EC, Cherian, S, Lewis, SM, Berchowitz, LE, Copenhaver, GP (2012) Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. PLoS Genet 8: pp. e1002968
    137. Yang, S, Yuan, Y, Wang, L, Li, J, Wang, W, Liu, H, Chen, JQ, Hurst, LD, Tian, D (2012) Great majority of recombination events in Arabidopsis are gene conversion events. Proc Natl Acad Sci USA 109: pp. 20992-20997
    138. Lu, P, Han, X, Qi, J, Yang, J, Wijeratne, AJ, Li, T, Ma, H (2012) Analysis of Arabidopsis genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis. Genome Res 22: pp. 508-518
    139. Qi, J, Chen, Y, Copenhaver, GP, Ma, H (2014) Detection of genomic variations and DNA polymorphisms and impact on analysis of meiotic recombination and genetic mapping. Proc Natl Acad Sci USA 111: pp. 10007-10012
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 endonuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The frequency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochromatin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are associated with specific chromatin modifications, including H2A.Z. Meiotic chromosomes are also organized in loop-base arrays connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination. Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic variation within populations and evolution of plant genomes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700