ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis
详细信息    查看全文
  • 作者:Hao Chen ; Peng Yang ; Jing Guo ; Chee Keong Kwoh ; Teresa M Przytycka…
  • 关键词:Meiotic recombination hotspot ; individual recombination strength ; ancestral recombination graph (ARG) ; genome ; wide association study (GWAS) ; major histocompatibility complex (MHC) ; random walks on graphs
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:12-supp
  • 全文大小:1,879 KB
  • 参考文献:1.Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T, Kouyoumjian R, Farhadian SF, Ward R, et al: Linkage disequilibrium in the human genome. Nature. 2001, 411 (6834): 199-204.CrossRef
    2.Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB: Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature. 2002, 415 (6872): 644-646.CrossRef
    3.Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES: High-resolution haplotype structure in the human genome. Nature genetics. 2001, 29 (2): 229-232.CrossRef
    4.McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P: The fine-scale structure of recombination rate variation in the human genome. Science (New York, NY). 2004, 304 (5670): 581-584.CrossRef
    5.Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P: Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science. 2010, 327 (5967): 876-879.CrossRef
    6.Myers S, Freeman C, Auton A, Donnelly P, McVean G: A common sequence motif associated with recombination hot spots and genome instability in humans. Nature genetics. 2008, 40 (9): 1124-1129.CrossRef
    7.Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B: PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science. 2010, 327 (5967): 836-840.CrossRef
    8.Parvanov ED, Petkov PM, Paigen K: Prdm9 controls activation of mammalian recombination hotspots. Science. 2010, 327 (5967): 835.-CrossRef
    9.Myers S, Bottolo L, Freeman C, McVean G, Donnelly P: A fine-scale map of recombination rates and hotspots across the human genome. Science. 2005, 310 (5746): 321-324.CrossRef
    10.Yang P, Wu M, Guo J, Kwoh CK, Przytycka TM, Zheng J: LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms. BMC bioinformatics. 2014, 15: 48-CrossRef
    11.Yang P, Wu M, Kwoh CK, Khil PP, Przytycka MT, Camerini-Otero RD, Zheng J: Predicting DNA sequence motifs of recombination hotspots by integrative visualization and analysis. IB. 2012
    12.Guo J, Jain R, Yang P, Fan R, Kwoh CK, Zheng J: Reliable and Fast Estimation of Recombination Rates by Convergence Diagnosis and Parallel Markov Chain Monte Carlo. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM. 2013
    13.Zheng J, Khil PP, Camerini-Otero RD, Przytycka TM: Detecting sequence polymorphisms associated with meiotic recombination hotspots in the human genome. Genome biology. 2010, 11 (10): R103-CrossRef
    14.Thompson P, Urayama K, Zheng J, Yang P, Ford M, Buffler P, Chokkalingam A, Lightfoot T, Taylor M: Differences in meiotic recombination rates in childhood acute lymphoblastic leukemia at an MHC class II hotspot close to disease associated haplotypes. PloS one. 2014, 9 (6): e100480-CrossRef
    15.Broman KW, Murray JC, Sheffield VC, White RL, Weber JL: Comprehensive human genetic maps: individual and sex-specific variation in recombination. American journal of human genetics. 1998, 63 (3): 861-869.CrossRef
    16.Cheung VG, Burdick JT, Hirschmann D, Morley M: Polymorphic variation in human meiotic recombination. American journal of human genetics. 2007, 80 (3): 526-530.CrossRef
    17.Coop G, Wen X, Ober C, Pritchard JK, Przeworski M: High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science. 2008, 319 (5868): 1395-1398.CrossRef
    18.Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, et al: A high-resolution recombination map of the human genome. Nature genetics. 2002, 31 (3): 241-247.
    19.Hubert R, MacDonald M, Gusella J, Arnheim N: High resolution localization of recombination hot spots using sperm typing. Nature genetics. 1994, 7 (3): 420-424.CrossRef
    20.Javed A, Pybus M, Mele M, Utro F, Bertranpetit J, Calafell F, Parida L: IRiS: construction of ARG networks at genomic scales. Bioinformatics. 2011, 27 (17): 2448-2450.CrossRef
    21.Parida L, Mele M, Calafell F, Bertranpetit J: Estimating the ancestral recombinations graph (ARG) as compatible networks of SNP patterns. Journal of computational biology : a journal of computational molecular cell biology. 2008, 15 (9): 1133-1154.CrossRef
    22.O'Fallon BD: ACG: rapid inference of population history from recombining nucleotide sequences. BMC bioinformatics. 2013, 14: 40-CrossRef
    23.Rasmussen MD, Hubisz MJ, Gronau I, Siepel A: Genome-wide inference of ancestral recombination graphs. eprint arXiv. 2013, 1306.5110v2-
    24.Peng B, Amos CI, Kimmel M: Forward-time simulations of human populations with complex diseases. PLoS genetics. 2007, 3 (3): e47-CrossRef
    25.Auton A, McVean G: Recombination rate estimation in the presence of hotspots. Genome research. 2007, 17 (8): 1219-1227.CrossRef
    26.Liu G, Wang Y, Wong L: FastTagger: an efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium. BMC bioinformatics. 2010, 11: 66-CrossRef
    27.Mele M, Javed A, Pybus M, Calafell F, Parida L, Bertranpetit J: A new method to reconstruct recombination events at a genomic scale. PLoS computational biology. 2010, 6 (11): e1001010-CrossRef
    28.Hartigan JA, Hartigan PM: The Dip Test of Unimodality.
    29.Crawford DC, Bhangale T, Li N, Hellenthal G, Rieder MJ, Nickerson DA, Stephens M: Evidence for substantial fine-scale variation in recombination rates across the human genome. Nature genetics. 2004, 36 (7): 700-706.CrossRef
    30.Coop G, Myers SR: Live hot, die young: transmission distortion in recombination hotspots. PLoS genetics. 2007, 3 (3): e35-CrossRef
    31.Grant CE, Bailey TL, Noble WS: FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011, 27 (7): 1017-1018.CrossRef
    32.Bailey TL: DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics. 2011, 27 (12): 1653-1659.CrossRef
    33.Baudat F, de Massy B: Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot. PLoS genetics. 2007, 3 (6): e100-CrossRef
    34.Jones EY, Fugger L, Strominger JL, Siebold C: MHC class II proteins and disease: a structural perspective. Nature reviews Immunology. 2006, 6 (4): 271-282.CrossRef
    35.Thiesen HJ: Multiple genes encoding zinc finger domains are expressed in human T cells. The New biologist. 1990, 2 (4): 363-374.
    36.Huebner K, Druck T, Croce CM, Thiesen HJ: Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering. American journal of human genetics. 1991, 48 (4): 726-740.
    37.Jia M, Souchelnytskyi S: Kinase suppressor of Ras 2 is involved in regulation of cell proliferation and is up-regulated in human invasive ductal carcinomas of breast. Experimental oncology. 2010, 32 (3): 209-212.
    38.Xue F, Li H, Zhang J, Lu J, Xia Y, Xia Q: miR-31 regulates interleukin 2 and kinase suppressor of ras 2 during T cell activation. Genes and immunity. 2013, 14 (2): 127-131.CrossRef
  • 作者单位:Hao Chen (1) (2)
    Peng Yang (1) (3)
    Jing Guo (1)
    Chee Keong Kwoh (1)
    Teresa M Przytycka (4)
    Jie Zheng (1) (5)

    1. Biomedical Informatics Graduate Lab, School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
    2. Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore, 138648, Singapore
    3. Institute for Infocomm Research (I2R), A*STAR (Agency for Science, Technology, and Research), 1 Fusionopolis, Singapore, 138632, Singapore
    4. Computational Biology Branch, National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, Maryland, 20894, USA
    5. Genome Institute of Singapore, A*STAR, Biopolis, Singapore, 138672, Singapore
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Meiotic recombination hotspots play important roles in various aspects of genomics, but the underlying mechanisms for regulating the locations and strengths of recombination hotspots are not yet fully revealed. Most existing algorithms for estimating recombination rates from sequence polymorphism data can only output average recombination rates of a population, although there is evidence for the heterogeneity in recombination rates among individuals. For genome-wide association studies (GWAS) of recombination hotspots, an efficient algorithm that estimates the individualized strengths of recombination hotspots is highly desirable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700