Dot1 and Set2 histone methylases control the spontaneous and UV-induced mutagenesis levels in the Saccharomyces cerevisiae yeasts
详细信息    查看全文
  • 作者:T. N. Kozhina ; T. A. Evstiukhina ; V. T. Peshekhonov…
  • 关键词:yeasts ; DNA repair ; mutagenesis ; methylation ; chromatin ; DOT1 ; SET2
  • 刊名:Russian Journal of Genetics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:52
  • 期:3
  • 页码:263-272
  • 全文大小:491 KB
  • 参考文献:1.van Leeuwen, F., Gafken, P.R., and Gottschling, D.E., Dot1p modulates silencing in yeast by methylation of the nucleosome core, Cell, 2002, vol. 109, pp. 745–756.CrossRef PubMed
    2.Game, J.C., Williamson, M.S., and Baccari, C., X-ray survival characteristics and genetic analysis for nine Saccharomyces deletion mutants that show altered radiation sensitivity, Genetics, 2005, vol. 169, pp. 51–63.CrossRef PubMed PubMedCentral
    3.Game, J.C., Williamson, M.S., Spicakova, T., and Brown, J.M., The RAD6/BRE1 histone modification pathway in Saccharomyces cerevisiae confers radiation resistance through a RAD51-dependent process that is independent of RAD18, Genetics, 2006, vol. 173, pp. 1951–1968.CrossRef PubMed PubMedCentral
    4.Grenon, M., Costelloe, T., Jimeno, S., et al., Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain, Yeast, 2007, vol. 24, pp. 105–119.CrossRef PubMed
    5.Chaudhuri, S., Wyrick, J.J., and Smerdon, M.J., Histone H3 Lys79 methylation is required for efficient nucleotide excision repair in a silenced locus of Saccharomyces cerevisiae, Nucleic Acids Res., 2009, vol. 37, pp. 1690–1700.CrossRef PubMed PubMedCentral
    6.Huyen, Y., Zgheib, O., Ditullio, R.A., Jr., et al., Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks, Nature, 2004, vol. 432, pp. 406–411.CrossRef PubMed
    7.Bostelman, L.J., Keller, A.M., Albrecht, A.M., et al., Methylation of histone H3 lysine-79 by Dot1p plays multiple roles in the response to UV damage in Saccharomyces cerevisiae, DNA Repair, 2007, vol. 6, pp. 383–395.CrossRef PubMed
    8.Conde, F. and San-Segundo, P.A., Role of Dot1 in the response to alkylating DNA damage in Saccharomyces cerevisiae: regulation of DNA damage tolerance by the error-prone polymerases Polzeta/Rev1, Genetics, 2008, vol. 179, pp. 1197–1210.CrossRef PubMed PubMedCentral
    9.San-Segundo, P.A. and Roeder, G.S., Role for the silencing protein Dot1 in meiotic checkpoint control, Mol. Biol. Cell, 2000, vol. 11, pp. 3601–3615.CrossRef PubMed PubMedCentral
    10.Wysocki, R., Javaheri, A., Allard, S., et al., Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9, Mol. Cell. Biol., 2005, vol. 25, pp. 8430–8443.CrossRef PubMed PubMedCentral
    11.Ng, H.H., Xu, R.M., Zhang, Y., and Struhl, K., Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone 3 lysine 79, J. Biol. Chem., 2002, vol. 277, pp. 34655–34657.CrossRef PubMed
    12.Briggs, S.D., Xiao, T., Sun, Z.W., et al., Gene silencing: trans-histone regulatory pathway in chromatin, Nature, 2002, vol. 418, p. 498.CrossRef PubMed
    13.Dover, J., Schneider, J., Tawiah-Boateng, M.A., et al., Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6, J. Biol. Chem., 2002, vol. 277, pp. 28368–28371.CrossRef PubMed
    14.Shahbazian, M.D., Zhang, K., and Grunstein, M., Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1, Mol. Cell, 2005, vol. 19, pp. 271–277.CrossRef PubMed
    15.Lee, J.S., Shukla, A., Schneider, J., et al., Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS, Cell, 2007, vol. 131, pp. 1084–1096.CrossRef PubMed
    16.Game, J.C. and Mortimer, R.K., A genetic study of X-ray sensitive mutants in yeast, Mutat. Res., 1974, vol. 24, pp. 281–292.CrossRef PubMed
    17.Giannattasio, M., Lazzaro, F., Plevani, P., and MuziFalconi, M., The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1, J. Biol. Chem., 2005, vol. 280, pp. 9879–9886.CrossRef PubMed
    18.Robzyk, K., Recht, J., and Osley, M.A., Rad6-dependent ubiquitination of histone H2B in yeast, Science, 2000, vol. 287, pp. 501–504.CrossRef PubMed
    19.Hwang, W.W., Venkatasubrahmanyam, S., Ianculescu, A.G., et al., A conserved ring finger protein required for histone H2B monoubiquitination and cell size control, Mol. Cell, 2003, vol. 11, pp. 261–266.CrossRef PubMed
    20.Wood, A., Krogan, N.J., Dover, J., et al., Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter, Mol. Cell, 2003, vol. 11, pp. 267–274.
    21.Krogan, N.J., Keogh, M.C., Datta, N., et al., A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1, Mol. Cell, 2003, vol. 12, pp. 1565–1576.CrossRef PubMed
    22.Ng, H.H., Dole, S., and Struhl, K., The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B, J. Biol. Chem., 2003, vol. 278, pp. 33625–33628.CrossRef PubMed
    23.Lis, E.T. and Romesherg, F.E., Role of Doa1 in the Saccharomyces cerevisiae DNA damage response, Mol. Cell. Biol., 2006, vol. 26, pp. 4123–4133.CrossRef
    24.Strahl, B.D., Grant, P.A., Briggs, S.D., et al., Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression, Mol. Cell. Biol., 2002, vol. 22, pp. 1298–1306.CrossRef PubMed PubMedCentral
    25.Sanders, S.L., Portoso, M., Mata, J., et al., Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage, Cell, 2004, vol. 119, pp. 603–614.CrossRef PubMed
    26.Krogan, N.J., Kim, M., Tong, A., et al., Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II, Mol. Cell. Biol., 2003, vol. 23, pp. 4207–4218.CrossRef PubMed PubMedCentral
    27.Li, B., Howe, L., Anderson, S., Yates, J.R. III, and Workman, J.L., The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II, J. Biol. Chem., 2003, vol. 8897–8903.
    28.Xiao, T., Hall, H., Kizer, K.O., et al., Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast, Genes Dev., 2003, vol. 17, pp. 654–663.CrossRef PubMed PubMedCentral
    29.Rao, B., Shibata, Y., Strahl, B.D., and Lieb, J.D., Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide, Mol. Cell. Biol., 2007, vol. 27, pp. 721–731.CrossRef PubMed PubMedCentral
    30.Zakharov, I.A., Kozhin, S.A., Kozhina, T.A., and Fedorova, I.V., Sbornik metodik po genetike drozhzheisakharomitsetov, (Methods in Yeast Saccharomyces cerevisiae Genetics), Leningrad: Nauka, 1984.
    31.Koval’tsova, S.V. and Korolev, V.G., The Saccharomyces cerevisiae yeast strain for testing environmental mutagens based on the interaction between rad2 and him1 mutations, Russ. J. Genet., 1996, vol. 32, no. 3, pp. 366–372.
    32.Roman, H., A system selective for mutations affecting the synthesis of adenine in yeast, Compt. Rend. Trav. Lab. Carlsberg, Ser. Physiol., 1956, vol. 26, pp. 299–314.
    33.Khromov-Borisov, N.N., Saffi, J., and Henriques, J.A.P., Perfect order plating: principal and applications, TTO, 2002, vol. 1, p. TO2638.
    34.Lea, D.E. and Coulson, C.A., The distribution of the number of mutants in bacterial populations, J. Genet., 1949, vol. 49, pp. 264–285.CrossRef PubMed
    35.Conde, F., Ontoso, D., Acosta, I., et al., Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae, DNA Repair, 2010, vol. 9, pp. 1038–1049.CrossRef PubMed
    36.Chabes, A., Georgieva, D., Domkin, V., et al., Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase, Cell, 2003, vol. 112, pp. 391–401.CrossRef PubMed
    37.Jordan, A. and Reichard, P., Ribonucleotide reductases, Annu. Rev. Biochem., 1998, vol. 67, pp. 71–98.CrossRef PubMed
    38.Reichard, P., Interactions between deoxyribonucleotide and DNA synthesis, Annu. Rev. Biochem., 1988, vol. 57, pp. 349–374.CrossRef PubMed
    39.Elledge, S.J. and Davis, R.W., Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability, Mol. Cell. Biol., 1987, vol. 7, pp. 2783–2793.CrossRef PubMed PubMedCentral
    40.Elledge, S.J. and Davis, R.W., Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase, Genes Dev., 1990, vol. 4, pp. 740–751.CrossRef PubMed
    41.Huang, M. and Elledge, S.J., Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae, Mol. Cell. Biol., 1997, vol. 17, pp. 6105–6113.PubMed
    42.Wang, P.J., Chabes, A., Casagrande, R., et al., Rnr4p, a novel ribonucleotide reductase small-subunit protein, Mol. Cell. Biol., 1997, vol. 17, pp. 6114–6121.PubMed
    43.Zhou, Z. and Elledge, S.J., DUN1 encodes a protein kinase that controls the DNA damage response in yeast, Cell, 1989, vol. 75, pp. 1119–1127.CrossRef
    44.Zhao, X., Miller, E.G., and Rothstein, R., A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools, Mol. Cell, 1998, vol. 2, pp. 329–340.CrossRef PubMed
    45.Chabes, A., Domkin, V., and Thelander, L., Yeast Sml1, a protein inhibitor of ribonucleotide reductase, J. Biol. Chem., 1999, vol. 274, pp. 36679–36683.PubMed
  • 作者单位:T. N. Kozhina (1) (2)
    T. A. Evstiukhina (1)
    V. T. Peshekhonov (1)
    A. Yu. Chernenkov (1)
    V. G. Korolev (1)

    1. Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, St. Petersburg, Gatchina, Leningrad oblast, 188300, Russia
    2. Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, St. Petersburg State Polytechnic University, St. Petersburg, 195251, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Animal Genetics and Genomics
    Microbial Genetics and Genomics
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3369
文摘
In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of histone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-induced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the spontaneous mutagenesis rate in both single and double mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the homologous-recombination-based and the postreplicative DNA repair.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700