Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering
详细信息    查看全文
  • 作者:Zita M. Jessop ; Muhammad Javed ; Iris A. Otto…
  • 刊名:Stem Cell Research & Therapy
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:7
  • 期:1
  • 全文大小:1,829 KB
  • 参考文献:1.Moroni L, Hamann D, Paoluzzi L, Pieper J, de Wijn JR, van Blitterswijk CA. Regenerating articular tissue by converging technologies. PLoS One. 2008;3(8):e3032.PubMed PubMedCentral CrossRef
    2.Biophoenix. Opportunities in stem cell research and commercialisation. London: Business Insights; 2006. p. 80.
    3.Togo T, Utani A, Naitoh M, Ohta M, Tsuji Y, Morikawa N, et al. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest. 2006;86(5):445–57.PubMed CrossRef
    4.Ruszymah BHI, Lokman BS, Asma A, Munirah S, Chua K, Mazlyzam AL, et al. Pediatric auricular chondrocytes gene expression analysis in monolayer culture and engineered elastic cartilage. Int J Pediatr Otorhinol. 2007;71(8):1225–34.CrossRef
    5.Bichara DA, O’Sullivan NA, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, et al. The tissue-engineered auricle: past, present, and future. Tissue Eng Part B Rev. 2012;18:51–61.PubMed CrossRef
    6.Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100:297–302.PubMed CrossRef
    7.Haisch A, Klaring S, Groger A, Gebert C, Sittinger M. A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol. 2002;259:316–21.PubMed
    8.Horlock N, Vögelin E, Bradbury E, Grobbelaar AO, Gault DT. Psychosocial outcome of patients after ear reconstruction: a retrospective study of 62 patients. Ann Plast Surg. 2005;54(5):517–24.PubMed CrossRef
    9.Jiamei D, Jiake C, Hongxing Z, Wanhou G, Yan W, Gaifen L. An investigation of psychological profiles and risk factors in congenital microtia patients. J Plast Reconstr Aesthet Surg. 2008;61:S37–43.PubMed CrossRef
    10.Lourenco Gasques JA, JM P d G, Navarro Cruz EMT. Psychosocial effects of otoplasty in children with prominent ears. Aesth Plast Surg. 2008;32:910–4.CrossRef
    11.Steffen A, Magritz R, Frenzel H, Edwards T, Siegert R. Psychometric validation of the youth quality of life-facial differences questionnaire in patients following ear reconstruction with rib cartilage in microtia. Plast Reconstr Surg. 2012;129(1):184e–6e.PubMed CrossRef
    12.Luquetti DV, Leonicini E, Mastroiacovo P. Microtia-anotia: a global review of prevalence rates. Birth Defects Res A Clin Mol Teratol. 2011;91:813–22.PubMed PubMedCentral CrossRef
    13.Evans K. The remarkable surgery that enabled doctors to use cartilage from 10-year-old Olivia's rib to give her a new ear. 31 Dec 2011. http://​www.​dailymail.​co.​uk/​health/​article-2080722/​The-remarkable-surgery-enabled-doctors-use-cartilage-10-year-old-Olivias-rib-new-ear.​html . Accessed 6 Nov 2014.
    14.Walsh F. Boy has ears created from ribs. 11 Aug 2014. http://​www.​bbc.​co.​uk/​news/​health-28746868 . Accessed 6 Nov 2014.
    15.Naik G. Science fiction comes alive as researchers grow organs in lab. 22 Mar 2013. http://​www.​wsj.​com/​news/​articles/​SB10001424127887​3236997045783282​51335196648?​mg=​reno64-wsj&​url=​http%3A%2F%2Fonline.​wsj.​com%2Farticle%2FSB100014241278​8732369970457832​8251335196648.​html . Accessed 2 Dec 2014.
    16.Dunham M. Britain makes a multimillion-dollar push towards lab-grown organs. 8 Apr 2014. http://​www.​nydailynews.​com/​life-style/​health/​noses-ears-blood-vessels-grow
    itain-article-1.​1749917 . Accessed 2 Dec 2014.
    17.Weller C. Scientists use stem cells to grow body parts in their lab, including noses, ears, and tear ducts. 8 Apr 2014. http://​www.​medicaldaily.​com/​scientists-use-stem-cells-grow-body-parts-their-lab-including-noses-ears-and-tear-ducts-275122 . Accessed 2 Dec 2014.
    18.Massey N. Doctors creating human ears using 3D printers hope to help children across the world. 5 Oct 2014. http://​www.​mirror.​co.​uk/​news/​uk-news/​doctors-creating-human-ears-using-4382408 . Accessed 2 Dec 2014.
    19.Sivayoham E, Woolford TJ. Current opinion on auricular reconstruction. Curr Opin Otolaryngol Head Neck Surg. 2012;20(4):287–90.PubMed CrossRef
    20.Tanzer RC. Total reconstruction of the external ear. Plast Reconstr Surg. 1959;23:1.CrossRef
    21.Tanzer RC. Total reconstruction of the auricle: the evolution of a plan of treatment. Plast Reconstr Surg. 1971;47:523.PubMed CrossRef
    22.Tanzer RC. Microtia: a long-term follow-up of 44 reconstructed auricles. Plast Reconstr Surg. 1978;61:161.PubMed CrossRef
    23.Brent B. Technical advances in ear reconstruction with autogenous rib cartilage grafts: personal experience with 1200 cases. Plast Reconstr Surg. 1999;104:319.PubMed CrossRef
    24.Brent B. The correction of microtia with autogenous cartilage grafts II: atypical and complex deformities. Plast Reconstr Surg. 1980;66:13.PubMed CrossRef
    25.Brent B. The correction of microtia with autogenous cartilage grafts I: the classic deformity. Plast Reconstr Surg. 1980;66:1.PubMed CrossRef
    26.Brent B, Byrd HS. Secondary ear reconstruction with cartilage grafts covered by axial, random, and free flaps of temporoparietal fascia. Plast Reconstr Surg. 1983;72:141.PubMed CrossRef
    27.Brent B. Modification of the stages in total reconstruction of the auricle: Parts I to IV (Discussion). Plast Reconstr Surg. 1994;93:267.CrossRef
    28.Brent B. Auricular repair with autogenous rib cartilage grafts: two decades of experience with 600 cases. Plast Reconstr Surg. 1992;90:355.PubMed CrossRef
    29.Park C, Lee TJ, Shin KS, et al. A single-stage two-flap method of total ear reconstruction. Plast Reconstr Surg. 1991;88:404.PubMed CrossRef
    30.Park C, Chung S. A single-stage two-flap method for reconstruction of partial auricular defect. Plast Reconstr Surg. 1998;102(4):1175–81.PubMed CrossRef
    31.Nagata S. A new method of total reconstruction of the auricle for microtia. Plast Reconstr Surg. 1993;92:187–201.PubMed CrossRef
    32.Nagata S. Modification of the stages in total reconstruction of the auricle: part I. Grafting the three-dimensional costal cartilage framework for lobule-type microtia. Plast Reconstr Surg. 1994;93:221.PubMed CrossRef
    33.Nagata S. Modification of the stages in total reconstruction of the auricle: part II. Grafting the three-dimensional costal cartilage framework for concha-type microtia. Plast Reconstr Surg. 1994;93:231.PubMed CrossRef
    34.Nagata S. Modification of the stages in total reconstruction of the auricle: part III. Grafting the three-dimensional costal cartilage framework for small concha-type microtia. Plast Reconstr Surg. 1994;93:243.PubMed CrossRef
    35.Nagata S. Modification of the stages in total reconstruction of the auricle: part IV. Ear elevation. Plast Reconstr Surg. 1994;93:254.PubMed CrossRef
    36.Nagata S. Microtia: auricular reconstruction. In: Vanderkolk CA, editor. Plastic surgery: indications, operations, and outcomes, vol. 2. St. Louis, MO: Mosby; 2000. p. 1023–56.
    37.Firmin F. Ear reconstruction in cases of typical micro-tia: personal experience based on 352 microtic ear corrections. Scand J Plast Reconstr Surg Hand Surg. 1998;32:35.PubMed CrossRef
    38.Cronin TD. Use of a silastic frame for total and subtotal reconstruction of the external ear: preliminary report. Plast Reconstr Surg. 1966;37:399.PubMed CrossRef
    39.Cronin TD, Greenberg RL, Brauer RO. Follow-up study of silastic frame for reconstruction of external ear. Plast Reconstr Surg. 1968;42:522.PubMed CrossRef
    40.Cronin TD, Ascough BM. Silastic ear construction. Clin Plast Surg. 1978;5:367.PubMed
    41.Wellisz T. Reconstruction of the burned external ear using a Medpor porous polyethylene pivoting helix framework. Plast Reconstr Surg. 1993;91(5):811–8.PubMed CrossRef
    42.Reinisch J. Microtia reconstruction using a polyethylene implant: an eight year surgical experience. Paper presented at the 1999 Annual Meeting of the American Association of Plastic Surgeons; 1999 May 5; Colorado Springs, CO.
    43.Reinisch JF, Lewin S. Ear reconstruction using a porous polyethylene framework and temporoparietal fascia flap. Facial Plast Surg. 2009;25(3):181–9.PubMed CrossRef
    44.Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng. 2006;12:691–703.PubMed CrossRef
    45.Shieh SJ, Terada S, Vacanti JP. Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials. 2004;25:1545–57.PubMed CrossRef
    46.Siegert R, Magritz R. Reducing the morbidity involved in harvesting autogenous rib cartilage. Facial Plast Surg. 2009;25:169–74.PubMed CrossRef
    47.Fukuda O, Yamada A. Reconstruction of the microtic ear with autogenous cartilage. Clin Plast Surg. 1978;5(3):351–66.PubMed
    48.Avelar JM, Psillakis JM. Microtia: total reconstruction of the auricle in one single operation. Br J Plast Surg. 1981;34(2):224–7.PubMed CrossRef
    49.Song Y, Song Y. An improved one-stage total ear reconstruction procedure. Plast Reconstr Surg. 1983;71:615.PubMed CrossRef
    50.Park G, Wiseman JB, Clark W. Correction of congenital microtia using stereolithography for surgical planning. Plastic Reconstr Surg. 2000;105(4):1444–7.
    51.Nimeskern L, Feldmann EM, Kuo W, Schwarz S, Goldberg-Bockhorn E, Dürr S, et al. Magnetic resonance imaging of the ear for patient-specific reconstructive surgery. PLoS One. 2014;9(8):e104975.PubMed PubMedCentral CrossRef
    52.Chen ZC, Chen PK, Hung KF, Lo LJ, Chen YR. Microtia reconstruction with adjuvant 3-dimensional template model. Ann Plast Surg. 2004;53(3):282–7.PubMed CrossRef
    53.Gillies H. Plastic surgery of the face. London: H. Frowde, Hodder & Sougton; 1920.
    54.Uppal RS, Sabbagh W, Chana J, Gault DT. Donor-site morbidity after autologous costal cartilage harvest in ear reconstruction and approaches to reducing donor-site contour deformity. Plast Reconstr Surg. 2008;121(6):1949–55.PubMed CrossRef
    55.Ohara K, Nakamura K, Ohta E. Chest wall deformities and thoracic scoliosis after cartilage graft harvesting. Plast Reconstr Surg. 1997;99:1030–6.PubMed CrossRef
    56.Nagamizu H, Nagata S. Minimization of postoperative complications and problems at the donor site after costal cartilage resection. In: Harii K, editor. Plastic, reconstructive, and aesthetic surgery. Amsterdam: Kugler Publications; 1995. p. 423–4.
    57.Thomson HG, Kim TY, Ein SH. Residual problems in chest donor sites after microtia reconstruction: a long-term study. Plast Reconstr Surg. 1995;95(6):961–8.PubMed CrossRef
    58.Kim YH, Namkung J, Lim BG, Min SH, Shin HW, Lim CH. Pleural effusion after microtia reconstructive surgery—a case report. Korean J Anesthesiol. 2011;61(2):166–8.PubMed PubMedCentral CrossRef
    59.Moon BJ, Lee HJ, Jang YJ. Outcomes following rhinoplasty using autologous costal cartilage. Arch Facial Plast Surg. 2012;14(3):175–80.PubMed CrossRef
    60.Wallace CG, Mao HY, Wang CJ, Chen YA, Chen PK, Chen ZC. Three-dimensional computed tomography reveals different donor-site deformities in adult and growing microtia patients despite total subperichondrial costal cartilage harvest and donor-site reconstruction. Plast Reconstr Surg. 2014;133(3):640.PubMed CrossRef
    61.Zhang Q, Zhang R, Xu F, Jin P, Cao Y. Auricular reconstruction for microtia: personal 6-year experience based on 350 microtia ear reconstructions in China. Plast Reconstr Surg. 2009;123:849–58.PubMed CrossRef
    62.Osorno G. Autogenous rib cartilage reconstruction of congenital ear defects: report of 110 cases with Brent's technique. Plast Reconstr Surg. 1999;104(7):1951–64.PubMed CrossRef
    63.Osorno G. A 20-year experience with the Brent technique of auricular reconstruction: pearls and pitfalls. Plast Reconstr Surg. 2007;119(5):1447–63.PubMed CrossRef
    64.Walton RL, Beahm EK. Auricular reconstruction for microtia: Part II. Surgical techniques. Plast Reconstr Surg. 2002;110:234–49.PubMed CrossRef
    65.Hiroki M, Tanaka K, Umeda T, Hata Y. Ear reconstruction in elderly patients: a two-part helix method in a framework. Br J Plast Surg. 2002;55(7):589–91.
    66.Berghaus A, Toplak F. Surgical concepts for reconstruction of the auricle. Arch Otolaryngol Head Neck Surg. 1986;112:388–97.PubMed CrossRef
    67.Fischer H, Gubisch W, Sinha V. Auricular reconstruction—our experience at marienhospital stuttgart, Germany. Indian J Otolaryngol Head Neck Surg. 2010;62(2):162–7.PubMed PubMedCentral CrossRef
    68.Beahm EK, Walton RL. Auricular reconstruction for microtia: Part I. Anatomy, embryology, and clinical evaluation. Plast Reconstr Surg. 2002;109(7):2472–82.
    69.Kawanabe Y, Nagata S. A new method of costal cartilage harvest for auricular reconstruction: part I. Avoidance and prevention of intraoperative and postoperative complications and problems. Plast Reconstr Surg. 2006;117:2011–8.PubMed CrossRef
    70.Schubert O, Sartor K, Forsting M, Reisser C. Three-dimensional computed display of otosurgical operation sites by spiral CT. Neuroradiology. 1996;38(7):663–8.PubMed CrossRef
    71.Britt JC, Park SS. Autogenous tissue-engineered cartilage: evaluation as an implant material. Arch Otolaryngol Head Neck Surg. 1998;124:671–7.PubMed CrossRef
    72.Rodriguez A, Cao YL, Ibarra C, Pap S, Vacanti M, Eavey RD, et al. Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg. 1999;103:1111–9.PubMed CrossRef
    73.Reiffel AJ, Kafka C, Hernandez KA, Popa S, Perez JL, Zhou S, et al. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One. 2013;8(2):e56506.PubMed PubMedCentral CrossRef
    74.Nimeskern L, van Osch GJVM, Müller R, Stok KS. Quantitative evaluation of mechanical properties in tissue-engineered auricular cartilage. Tissue Eng Part B Rev. 2013;20(1):17–27.PubMed CrossRef
    75.Kamil SH, Vacanti MP, Aminuddin BS, Jackson MJ, Vacanti CA, Eavey RD. Tissue engineering of a human sized and shaped auricle using a mold. Laryngoscope. 2004;114:867.PubMed CrossRef
    76.Christophel JJ, Chang JS, Park SS. Transplanted tissue-engineered cartilage. Arch Facial Plast Surg. 2006;8(2):117–22.PubMed CrossRef
    77.Nayyer L, Patel KH, Esmaelli A. Tissue engineering: revolution and challenge in auricular cartilage reconstruction. Plast Reconstr Surg. 2012;129(5):1123–37.PubMed CrossRef
    78.Brommer H, Brama PAJ, Laasanen MS, Helminen HJ, van Weeren PR, Jurvelin JS. Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Equine Vet J. 2005;37(2):148–54.PubMed CrossRef
    79.Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen. 2009;17(1):136–46.PubMed CrossRef
    80.Nabzdyk C, Pradhan L, Molina J, Perin E, Paniagua D, Rosenstrauch D. Auricular chondrocytes—from benchwork to clinical applications. In Vivo. 2009;23(3):369–80.PubMed
    81.Homicz MR, Schumacher BL, Sah RL, Watson D. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngol Head Neck Surg. 2002;127:398–408.PubMed CrossRef
    82.Jian-Wei X, Randolph MA, Peretti GM, Nazzal JA, Roses RE, Morse KR, et al. Producing a flexible tissue-engineered cartilage framework using expanded polytetrafluoroethylene membrane as a pseudoperichondrium. Plastic Reconstr Surg. 2005;116(2):577–89.CrossRef
    83.Gonfiotti A, Jaus MO, Barale S, Baiguera S, Comin C, Lavorini F, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383:238–44.PubMed CrossRef
    84.Delaere P, Vranckx J, Verleden G, De Leyn P, Van Raemdonck D. Tracheal Transplant Group. Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med. 2010;362:138–45.PubMed CrossRef
    85.Vogel G. Trachea transplants test the limits. Science. 2013;340:266–8.PubMed CrossRef
    86.Ingber DE. Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci U S A. 2005;102:11571–2.PubMed PubMedCentral CrossRef
    87.Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011;29(4):183–90.PubMed CrossRef
    88.Birchall MA, Seifalian AM. Tissue engineering's green shoots of disruptive innovation. Lancet. 2014;384(9940):288–90.PubMed CrossRef
    89.Ma HL, Hung SC, Lin SY, Chen YL, Lo WH. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A. 2003;64:273–81.PubMed CrossRef
    90.Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005;26:5158–66.PubMed CrossRef
    91.Ho ST, Cool SM, Hui JH, Hutmacher DW. The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials. 2010;31:38–47.PubMed CrossRef
    92.Markway BD, Tan GK, Brooke G, Hudson JE, Cooper-White JJ, Doran MR. Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant. 2010;19:29–42.PubMed CrossRef
    93.Dragoo JL, Samimi B, Zhu M, Hame SL, Thomas BJ, Lieberman JR, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. J Bone Joint Surg Br. 2003;85:740–7.PubMed
    94.Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27:91–9.PubMed CrossRef
    95.Cheng NC, Estes BT, Awad HA, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A. 2009;15:231–41.PubMed PubMedCentral CrossRef
    96.Raghunath J, Sutherland J, Salih V, Mordan N, Butler PE, Seifalian AM. Chondrogenic potential of blood-acquired mesenchymal progenitor cells. J Plast Reconstr Aesthet Surg. 2010;63:841–7.PubMed CrossRef
    97.Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(Pt 6):889–97.PubMed CrossRef
    98.Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5(10):e13246.PubMed PubMedCentral CrossRef
    99.Kobayashi S, Takebe T, Zheng Y-W, Mizuno M, Yabuki Y, Maegawa J, et al. Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLoS One. 2011;6(10):e26393.PubMed PubMedCentral CrossRef
    100.Kobayashi S, Takebe T, Inui M, Iwai S, Kan H, Zheng YW, et al. Reconstruction of human elastic cartilage by a CD44 CD90 stem cell in the ear perichondrium. Proc Natl Acad Sci U S A. 2011;108:14479.PubMed PubMedCentral CrossRef
    101.Yanaga H, Imai K, Koga M, Yanaga K. Cell-engineered human elastic chondrocytes regenerate natural scaffold in vitro and neocartilage with neoperichondrium in the human body post-transplantation. Tissue Eng Part A. 2012;18(19–20):2020–9.PubMed PubMedCentral CrossRef
    102.van Osch GJ, van der Veen SW, Burger EH, Verwoerd-Verhoef HL. Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium. Tissue Eng. 2000;6:321–30.PubMed CrossRef
    103.Bichara DA, Pomerantseva I, Zhao X, Zhou L, Kulig KM, Tseng A, et al. Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Tissue Eng A. 2014;20:303–12.CrossRef
    104.Xu JW, Zaporojan V, Peretti GM, Roses RE, Morse KB, Roy AK, et al. Injectable tissue-engineered cartilage with different chondrocyte sources. Plast Reconstr Surg. 2004;113:1361–71.PubMed CrossRef
    105.Isogai N, Asamura S, Higashi T, Ikada Y, Morita S, Hillyer J, et al. Tissue engineering of an auricular cartilage model utilizing cultured chondrocyte-poly(L-lactide-epsilon-caprolactone) scaffolds. Tissue Eng. 2004;10:673–87.PubMed CrossRef
    106.Semine AA, Damon A. Costochondral ossification and aging in five populations. Hum Biol. 1975;47(1):101–16.PubMed
    107.Barchilon V, Hershkovitz I, Rothschild BM, Wish-Baratz S, Latimer B, Jellema LM, et al. Factors affecting the rate and pattern of the first costal cartilage ossification. Am J Forensic Med Pathol. 1996;17(3):239–47.PubMed CrossRef
    108.Lau AG, Kindig MW, Kent RW. Morphology, distribution, mineral density and volume fraction of human calcified costal cartilage. Acta Biomater. 2011;7(3):1202–9.PubMed CrossRef
    109.Zhou L, Pomerantseva I, Bassett EK, Bowley CM, Zhao X, Bichara DA, et al. Engineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng A. 2011;17(11–12):1573–81.CrossRef
    110.Romo 3rd T, Morris LG, Reitzen SD, Ghossaini SN, Wazen JJ, Kohan D. Reconstruction of congenital microtia-atresia: outcomes with the Medpor/bone-anchored hearing aid-approach. Ann Plast Surg. 2009;62(4):384–9.PubMed CrossRef
    111.Eyre DR, Dickson IR, Van Ness KP. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J. 1988;252:495–500.PubMed PubMedCentral CrossRef
    112.Bank RM, Bayliss FPJG, Lafeber AM, Tekoppele J. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. Biochem J. 1998;330:345–51.PubMed PubMedCentral CrossRef
    113.Williamson AK, Chen AC, Masuda K, Thonar EJ, Sah RL. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res. 2003;21(5):872–80.PubMed CrossRef
    114.Zopf DA, Flanagan CL, Nasser HB, Mitsak AG, Huq FS, Rajendran V, et al. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope. 2015;125(8):E262–8.PubMed CrossRef
    115.Khan IM, Evans SL, Young RD, Blain EJ, Quantock AJ, Avery N, et al. Fibroblast growth factor 2 and transforming growth factor β1 induce precocious maturation of articular cartilage. Arthritis Rheum. 2011;63(11):3417–27.PubMed CrossRef
    116.Khan IM, Francis L, Theobald PS, Perni S, Young RD, Prokopovich P, et al. In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials. 2013;34(5):1478–87.PubMed PubMedCentral CrossRef
    117.Tseng A. Extensively expanded auricular chondrocytes form neocartilage in vivo. Cartilage. 2014;5:241–51.PubMed PubMedCentral CrossRef
    118.Huey DJ, Sanchez-Adams J, Willard VP, Athanasiou KA. Immunogenicity of bovine and leporine articular chondrocytes and meniscus cells. Tissue Eng A. 2012;18(5–6):568–75.CrossRef
    119.Sterodimas A, de Faria J. Human auricular tissue engineering in an immunocompetent animal model. Aesthet Surg J. 2013;33(2):283–9.PubMed CrossRef
    120.Markillie P. A third industrial revolution. 21 Apr 2012. http://​www.​economist.​com/​node/​21552901 . Accessed 9 Jan 2015.
    121.Rozen WM, Ting JW, Baillieu C, Leong J. Stereolithographic modeling of the deep circumflex iliac artery and its vascular branching: a further advance in computed tomography-guided flap planning. Plast Reconstr Surg. 2012;130(2):380e–2e.PubMed CrossRef
    122.Gerstle TL, Ibrahim AMS, Kim PS, Lee BT, Lin SJ. A plastic surgery application in evolution: three-dimensional printing. Plast Reconst Surg. 2014;133(2):446–51.PubMed CrossRef
    123.Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):661–6.PubMed CrossRef
    124.Melchels F, Wiggenhauser PS, Warne D, Barry M, Ong FR, Chong WS, et al. CAD/CAM-assisted breast reconstruction. Biofabrication. 2011;3(3):034114.PubMed CrossRef
    125.Wang G, Li J, Khadka A, Hsu Y, Li W, et al. CAD/CAM and rapid prototyped titanium for reconstruction of ramus defect and condylar fracture caused by mandibular reduction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(3):356–61.PubMed CrossRef
    126.The world’s first 3D printed total jaw reconstruction. June 2011. http://​www.​xilloc.​com/​patients/​stories/​total-mandibular-implant/​ . Accessed 9 Jan 2015.
    127.Chrzan R, Urbanik A, Karbowski K, Moskała M, Polak J, Pyrich M. Cranioplasty prosthesis manufacturing based on reverse engineering technology. Med Sci Monit. 2012;18:MT1–6.PubMed PubMedCentral CrossRef
    128.Manning L. Additive manufacturing used to create first laser-sintered cranial implant geometry. Adv Mater Processes. 2012;170(9):33–5.
    129.Lee H, Ahn S, Bonassar LJ, Kim G. Cell(MC3T3-E1)-printed poly(ϵ-caprolactone)/alginate hybrid scaffolds for tissue regeneration. Macromol Rapid Commun. 2013;34(2):142–9.PubMed CrossRef
    130.Shim J-H, Kim JY, Park M, Park J, Cho DW. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication. 2011;3(3):034102.PubMed CrossRef
    131.Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJ, Melchels FP, et al. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5(3):035007.PubMed CrossRef
    132.Xue J, Feng B, Zheng R, Lu Y, Zhou G, Liu W, et al. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials. 2013;34(11):2624–31.PubMed CrossRef
    133.Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater Weinheim. 2013;25(36):5011–28.PubMed CrossRef
    134.Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux. Biofabrication. 2010;2(1):010201.PubMed CrossRef
    135.Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng C Methods. 2012;18(1):62–70.CrossRef
    136.Melchels FPW, Dhert WJA, Hutmacher DW, Malda J. Development and characterization of a new bioink for additive tissue manufacturing. J Mater Chem B. 2014;2(16):2282–9.CrossRef
    137.Censi R, Schuurman W, Malda J, Hennink WE. Printable photopolymerizable thermosensitive p(HPMA-lactate)-PEG hydrogel as scaffold for tissue engineering. Adv Funct Mater. 2011;21(10):1833–42.CrossRef
    138.Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication. 2011;3(2):021001.PubMed CrossRef
    139.Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci. 2013;13(5):551–61.PubMed CrossRef
    140.Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013;5(1):015001.PubMed CrossRef
    141.Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, et al. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater. 2012;8(8):3027–34.PubMed PubMedCentral CrossRef
    142.Boere KMW, Visser J, Seyednejad H, Rahimian S, Gawlitta D, van Steenbergen MJ, et al. Covalent attachment of a 3D-printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomater. 2014;10(6):2602–11.PubMed CrossRef
  • 作者单位:Zita M. Jessop (1) (2)
    Muhammad Javed (1) (2)
    Iris A. Otto (3) (4)
    Emman J. Combellack (1) (2)
    Siân Morgan (1) (2)
    Corstiaan C. Breugem (4)
    Charles W. Archer (1)
    Ilyas M. Khan (5)
    William C. Lineaweaver (6)
    Moshe Kon (4)
    Jos Malda (3) (7)
    Iain S. Whitaker (1) (2)

    1. Reconstructive Surgery & Regenerative Medicine Research Group, Swansea University Medical School, Room 509, ILS2, Swansea, SA2 8SS, UK
    2. The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, SA6 6NL, UK
    3. Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
    4. Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
    5. KhanLab, Swansea University, ILS2, Swansea, SA2 8SS, UK
    6. Division of Plastic Surgery, University of Mississippi Medical Center, Jackson, Mississippi, 39216, USA
    7. Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Domplein 29, 3512 JE, Utrecht, The Netherlands
  • 刊物主题:Stem Cells; Cell Biology;
  • 出版者:BioMed Central
  • ISSN:1757-6512
文摘
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites. Zita M. Jessop and Muhammad Javed contributed equally to this work.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700