Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart
详细信息    查看全文
  • 作者:Minna Hassinen ; Jaakko Haverinen…
  • 关键词:Zebrafish ; Heart ; Inward rectifier potassium current ; Kir2 channel
  • 刊名:Pfl篓鹿gers Archiv - European Journal of Physiology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:467
  • 期:12
  • 页码:2437-2446
  • 全文大小:951 KB
  • 参考文献:1.Alagem N, Dvir M, Reuveny E (2001) Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues. J Physiol 534(2):381-93PubMedCentral CrossRef PubMed
    2.Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245-250. doi:10.-158/-008-5472.?CAN-04-0496 CrossRef PubMed
    3.Anumonwo JMB, Lopatin AN (2010) Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol 48:45-4. doi:10.-016/?j.?yjmcc.-009.-8.-13 PubMedCentral CrossRef PubMed
    4.Arnaout R, Ferrer T, Huisken J, Spitzer K, Stainier DY, Tristani-Firouzi M, Chi NC (2007) Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A 104:11316-1321PubMedCentral CrossRef PubMed
    5.Brette F, Luxan G, Cros C, Dixey H, Wilson C, Shiels HA (2008) Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun 374:143-46. doi:10.-016/?j.?bbrc.-008.-6.-09 PubMedCentral CrossRef PubMed
    6.Briggs JP (2002) The zebrafish: a new model organism for integrative physiology. Am J Physiol 282:R3–R9
    7.Chatelain FC, Alagem N, Xu Q, Pancarglu R, Reuveny E, Jr LMD (2005) The pore helix dipole has a minor role in inward rectifier channel function. Neuron 47:833-43PubMedCentral CrossRef PubMed
    8.Chatelain FC, Gazzarrini S, Fujiwara Y, Arrigoni C, Domigan C, Ferrara G, Pantoja C, Thiel G, Moroni A, Minor DL Jr (2009) Selection of inhibitor-resistant viral potassium channels identifies a selectivity filter site that affects barium and amantadine block. PLoS One 4:e7496. doi:10.-371/?journal.?pone.-007496 PubMedCentral CrossRef PubMed
    9.Cortemeglia C, Beitinger TL (2005) Temperature tolerance of wild-type and red transgenic zebra danios. Trans Am Fish Soc 134:1431-437CrossRef
    10.Dhamoon AS, Jalife J (2005) The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2:316-24CrossRef PubMed
    11.Dhamoon AS, Pandit SV, Sarmast F, Parisian KR, Guha P, Li Y, Bagwe S, Taffet SM, Anumonwo JMB (2004) Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ Res 94:1332-339CrossRef PubMed
    12.Eleawa SM, Sakr HF, Hussein AM, Assiri AS, Bayoumy NMK, Alkhateeb M (2013) Effect of testosterone replacement therapy on cardiac performance and oxidative stress in orchidectomized rats. Acta Physiol 209:136-47. doi:10.-111/?apha.-2158 CrossRef
    13.Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582:675-93PubMedCentral CrossRef PubMed
    14.Galli GL, Lipnick MS, Block BA (2009) Effect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes. Am J Physiol 297:R502–R509. doi:10.-152/?ajpregu.-0810.-008
    15.Hassinen M, Laulaja S, Paajanen V, Haverinen J, Vornanen M (2011) Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, IKs, by homomeric assembly of Kv7.1 subunits without MinK. Am J Physiol 301:R255-5. doi:10.-152/?ajpregu.-0067.-011 CrossRef
    16.Hassinen M, Paajanen V, Haverinen J, Eronen H, Vornanen M (2007) Cloning and expression of cardiac Kir2.1 and Kir2.2 channels in thermally acclimated rainbow trout. Am J Physiol 292:R2328–R2339
    17.Hassinen M, Paajanen V, Vornanen M (2008) A novel inwardly rectifying K+ channel, Kir2.5, is upregulated under chronic cold stress in fish cardiac myocytes. J Exp Biol 211:2162-171. doi:10.-242/?jeb.-16121 CrossRef PubMed
    18.Haverinen J, Hassinen M, Vornanen M (2007) Fish cardiac sodium channels are tetrodotoxin sensitive. Acta Physiol 191:197-04. doi:10.-111/?j.-748-1716.-007.-1734.?x CrossRef
    19.Haverinen J, Vornanen M (2009) Responses of action potential and K+ currents to temperature acclimation in fish hearts: phylogeny or thermal preferences? Physiol Biochem Zool 82:468-82. doi:10.-086/-90223 CrossRef PubMed
    20.Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function and physiological role. Physiol Rev 90:291-66CrossRef PubMed
    21.Hughes BA, Kumar G, Yuan Y, Swaminathan A, Yan D, Sharma A, Plumley L, Yang-Feng TL, Swaroop A (2000) Cloning and functional expression of human retinal Kir2.4, a pH-sensitive inwardly rectifying K+ channel. Am J Physiol 279:C771-4
    22.Jaillon O, Aury J, Brunet F, Petit J, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyoty
  • 作者单位:Minna Hassinen (1)
    Jaakko Haverinen (1)
    Matt E. Hardy (2)
    Holly A. Shiels (2)
    Matti Vornanen (1)

    1. Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
    2. Faculty of Life Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
  • 刊物主题:Human Physiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-2013
文摘
Electrophysiological properties and molecular background of the zebrafish (Danio rerio) cardiac inward rectifier current (IK1) were examined. Ventricular myocytes of zebrafish have a robust (?.7?±-.2 pA pF? at ?20 mV) strongly rectifying and Ba2+-sensitive (IC50--.8 μM) IK1. Transcripts of six Kir2 channels (drKir2.1a, drKir2.1b, drKir2.2a, drKir2.2b, drKir2.3, and drKir2.4) were expressed in the zebrafish heart. drKir2.4 and drKir2.2a were the dominant isoforms in both the ventricle (92.9?±-.5 and 6.3?±-.5 %) and the atrium (28.9?±-.9 and 64.7?±-.0 %). The remaining four channels comprised together less than 1 and 7 % of the total transcripts in ventricle and atrium, respectively. The four main gene products (drKir2.1a, drKir2.2a, drKir2.2b, drKir2.4) were cloned, sequenced, and expressed in HEK cells for electrophysiological characterization. drKir2.1a was the most weakly rectifying (passed more outward current) and drKir2.2b the most strongly rectifying (passed less outward current) channel, whilst drKir2.2a and drKir2.4 were intermediate between the two. In regard to sensitivity to Ba2+ block, drKir2.4 was the most sensitive (IC50--.8 μM) and drKir2.1a the least sensitive channel (IC50--32 μM). These findings indicate that the Kir2 isoform composition of the zebrafish heart markedly differs from that of mammalian hearts. Furthermore orthologous Kir2 channels (Kir2.1 and Kir2.4) of zebrafish and mammals show striking differences in Ba2+-sensitivity. Structural and functional differences needs to be taken into account when zebrafish is used as a model for human cardiac electrophysiology, cardiac diseases, and in screening cardioactive substances. Keywords Zebrafish Heart Inward rectifier potassium current Kir2 channel

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700