A Novel Aldehyde Reductase Encoded by YML131W from Saccharomyces cerevisiae Confers Tolerance to Furfural Derived from Lignocellulosic Biomass Conversion
详细信息    查看全文
  • 作者:Xi Li (1)
    Ruoheng Yang (2)
    Menggen Ma (3) (4)
    Xu Wang (4)
    Juan Tang (2)
    Xianxian Zhao (3)
    Xiaoping Zhang (4)

    1. College of Landscape Architecture
    ; Sichuan Agricultural University ; No. 211 Huimin Road ; Wenjiang ; 611130 ; Sichuan ; People鈥檚 Republic of China
    2. College of Agronomy
    ; Sichuan Agricultural University ; No. 211 Huimin Road ; Wenjiang ; 611130 ; Sichuan ; People鈥檚 Republic of China
    3. Institute of Ecological and Environmental Sciences
    ; College of Resource and Environmental Sciences ; Sichuan Agricultural University ; No. 211 Huimin Road ; Wenjiang ; 611130 ; Sichuan ; People鈥檚 Republic of China
    4. Department of Applied Microbiology
    ; College of Resourceand Environmental Sciences ; Sichuan Agricultural University ; No. 211 Huimin Road ; Wenjiang ; 611130 ; Sichuan ; People鈥檚 Republic of China
  • 关键词:Aldehyde reductase ; Detoxification ; Ethanol ; Furfural ; Lignocellulosic biomass ; Saccharomyces cerevisiae
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:119-129
  • 全文大小:1,128 KB
  • 参考文献:1. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627鈥?42 CrossRef
    2. Nielsen J, Larsson C, van Maris A, Pronk J (2013) Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 24:398鈥?04 CrossRef
    3. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by / Saccharomyces cerevisiae, / Zymomonas mobilis, / Pichias tipitis, and / Candida shehatae. Enzym Microb Technol 19:220鈥?25 CrossRef
    4. Larsson S, Palmqvist E, Hahn-H盲gerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24:151鈥?59 CrossRef
    5. Luo CD, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenerg 22:125鈥?38 CrossRef
    6. Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors and in situ detoxification. In: Vert猫s AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, Chichester, pp 233鈥?59 CrossRef
    7. Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr Res 217:71鈥?5 CrossRef
    8. Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lid茅n G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659鈥?665 CrossRef
    9. Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1:497鈥?06 CrossRef
    10. J枚nsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16 CrossRef
    11. Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809鈥?25 CrossRef
    12. Heer D, Heine D, Sauer U (2009) Resistance of / Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75:7631鈥?638 CrossRef
    13. Laadan B, Almeida JR, R氓dstr枚m P, Hahn-H盲gerdal B, Gorwa-Grauslund M (2008) Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in / Saccharomyces cerevisiae. Yeast 25:191鈥?98 CrossRef
    14. Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by / Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743鈥?53 CrossRef
    15. Liu ZL, Moon J (2009) A novel NADPH-dependent aldehyde reductase gene from / Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1鈥?0 CrossRef
    16. Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH (2011) Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in / Saccharomyces cerevisiae. Bioresour Technol 102:6033鈥?038 CrossRef
    17. Moon J, Liu ZL (2012) Engineered NADH-dependent / GRE2 from / Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH. Enzym Microb Technol 50:115鈥?20 CrossRef
    18. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345鈥?52
    19. Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and 5-hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121鈥?24:451鈥?60 CrossRef
    20. Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics 282:233鈥?44 CrossRef
    21. Sehnem NT, Machado Ada S, Leite FC, Pita Wde B, de Morais MA, Jr AMA (2013) 5-Hydroxymethylfurfural induces / ADH7 and / ARI1 expression in tolerant industrial / Saccharomyces cerevisiae strain P6H9 during bioethanol production. Bioresour Technol 133:190鈥?96 CrossRef
    22. Ma M, Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover / YAP1, / PDR1, / PDR3, / RPN4, and / HSF1 as key regulatory genes in genomic adaptation to lignocellulose derived inhibitor HMF for / Saccharomyces cerevisiae. BMC Genomics 11:660 CrossRef
    23. Nordling E, J枚rnvall H, Persson B (2002) Medium-chain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. Eur J Biochem 269:4267鈥?276 CrossRef
    24. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686鈥?91 CrossRef
    25. Ma M, Wang X, Zhang X, Zhao X (2013) Alcohol dehydrogenases from / Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Appl Microbiol Biotechnol 97:8411鈥?425 CrossRef
    26. Rozen S, Skaletsky H (2000) Bioinformatics methods and protocols. In: Krawetz S, Misener S (eds) Methods in molecular biology. Humana, Totowa, pp 365鈥?86
    27. Liu ZL, Slininger PJ (2007) Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR. J Microbiol Methods 68:486鈥?96 CrossRef
    28. Liu ZL, Palmquist DE, Ma M, Liu J, Alexander NJ (2009) Application of a master equation for quantitative mRNA analysis using qRT-PCR. J Biotechnol 143:10鈥?6 CrossRef
    29. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
    30. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355鈥?60 CrossRef
    31. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, S谩-Correia I (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in / Saccharomyces cerevisiae. Nucleic Acids Res 34:D446鈥揇451 CrossRef
    32. Hori T, Yokomizo T, Ago H, Sugahara M, Ueno G, Yamamoto M, Kumasaka T, Shimizu T, Miyano M (2004) Structural basis of leukotriene B4 12-hydroxydehydrogenase/ 15-oxo-prostaglandin 13-reductase catalytic mechanism and a possible Src homology 3 domain binding loop. J Biol Chem 279:22615鈥?2623 CrossRef
    33. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348鈥揇352 CrossRef
    34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725鈥?729 CrossRef
    35. Sinicropi D, Cronin M, Liu M-L (2007) Gene expression profiling utilizing microarray technology and RT-PCR. In: Ferrari ME-i-c, Ozkan M, Heller M (eds) BioMEMS and biomedical nanotechnology, Volume II: Micro/Nanotechnologies for genomics and proteomics. Springer-Verlag, Heidelberg, pp 23鈥?6
    36. Alriksson B, Horv谩th IS, J枚nsson LJ (2010) Overexpression of / Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose derived fermentation inhibitors. Process Biochem 45:264鈥?71 CrossRef
    37. Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H (2012) Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng 113:451鈥?55 CrossRef
    38. Kim D, Hahn JS (2013) Roles of the Yap1 transcription factor and antioxidants in / Saccharomyces cerevisiae鈥檚 tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol 79:5069鈥?077 CrossRef
    39. Persson B, Hedlund J, J枚rnvall H (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the MDR superfamily. Cell Mol Life Sci 65:3879鈥?894 CrossRef
    40. Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199鈥?24 CrossRef
    41. Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in / Saccharomyces cerevisiae. Biotechnol Biofuels 3:2 CrossRef
    42. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895鈥?99 CrossRef
    43. Wang X, Xu H, Ha SW, Ju D, Xie Y (2010) Proteasomal degradation of Rpn4 in / Saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics 184:335鈥?42 CrossRef
    44. Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on / Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259鈥?266 CrossRef
    45. L贸pez-Rituerto E, Avenoza A, Busto JH, Peregrina JM (2010) Evidence of metabolic transformations of amino acids into higher alcohols through 13C NMR studies of wine alcoholic fermentation. J Agric Food Chem 58:4923鈥?927 CrossRef
    46. Branduardi P, Longo V, Berterame NM, Rossi G, Porro D (2013) A novel pathway to produce butanol and isobutanol in / Saccharomyces cerevisiae. Biotechnol Biofuels 6:68 CrossRef
    47. Wonisch W, Schaur RJ, Bilinski T, Esterbauer H (1995) Assessment of growth inhibition by aldehydic lipid peroxidation products and related aldehydes by / Saccharomyces cerevisiae. Cell Biochem Funct 13:91鈥?8 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Furfural is one of the main aldehyde inhibitors generated during the pretreatment of lignocellulosic biomass. Saccharomyces cerevisiae can in situ detoxify furfural to the less toxic furan methanol (FM) via the activities of multiple dehydrogenases/reductases. In this study, we report that an uncharacterized gene, YML131W, was highly induced under furfural stress conditions and that the transcription factors Yap1p, Msn2/4p, and/or Hsf1p likely controlled its upregulated expression. The induced transcription of YML131W led to higher concentrations of its encoded protein. Enzyme activity assays showed that YML131W is an aldehyde reductase that plays a role in detoxifying furfural to FM. YML131W also showed activity toward other aldehydes, suggesting that it is involved in detoxifying endogenous toxic aldehydes generated via the degradation of misfolded and damaged proteins. This detoxification role would help to maintain cell viability under furfural stress conditions. A S. cerevisiae strain overexpressing YML131W showed increased tolerance to furfural. YML131W was able to catalyze the conversion of formaldehye, acetaldehyde, propionaldehyde, and butyaldehyde to their corresponding alcohols, indicating that it has potential applications in producing fuels such as butanol and isobutanol. A phylogenetic analysis grouped YML131W into the leukotriene B4 dehydrogenases (LTD) family, but its amino acid sequence substantially differed from those of other proteins in the LTD family. We identified 15 proteins from 14 yeast species that showed sequence similarities to YML131W. These other proteins likely have similar functions to that of YML131W and may have potential to confer tolerance to aldehyde inhibitors derived from the lignocellulosic biomass conversion process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700