Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers
详细信息    查看全文
  • 作者:Firas Azzam ; Magali Galliot ; Jean-Luc Putaux ; Laurent Heux ; Bruno Jean
  • 关键词:Cellulose nanocrystals ; Periodate oxidation ; Reductive amination ; Peeling
  • 刊名:Cellulose
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:22
  • 期:6
  • 页码:3701-3714
  • 全文大小:1,666 KB
  • 参考文献:Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921鈥?931CrossRef
    Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283鈥?85CrossRef
    Azzam F, Heux L, Putaux J-L, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652鈥?659CrossRef
    Brito BSL, Pereira FV, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527鈥?536CrossRef
    Calvini P, Gorassini A, Luciano G, Franceschi E (2006) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40:177鈥?83CrossRef
    Casu B, Naggi A, Torri G, Allegra G, Meille SV, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18:2762鈥?767CrossRef
    Chauve G, Fraschini C, Jean B (2014) Separation of cellulose nanocrystals. In: Oksman K, Mathew AP, Bismark A, Rojas O, Sain M (eds) Handbook of green materials: processing technologies, properties and applications. World Sci. Pub. Co., London, pp 73鈥?7
    Codou A, Guigo N, Heux L, Sbirrazzuoli N (2015) Partial periodate oxidation and thermal cross-linking for the processing of all cellulose composites. Compos Sci Technol 117:54鈥?1CrossRef
    Dash R, Elder T, Ragauskas AJ (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19:2069鈥?079CrossRef
    Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638鈥?45CrossRef
    Drogat N, Granet R, Le Morvan C, B茅gaud-Grimaud G, Krausz P, Sol V (2012) Chlorin-PEI-labeled cellulose nanocrystals: synthesis, characterization and potential application in PDT. Bioorg Med Chem Lett 22:3648鈥?652CrossRef
    Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570鈥?74CrossRef
    Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303鈥?15CrossRef
    Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6:507鈥?13CrossRef
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1鈥?3CrossRef
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57鈥?5CrossRef
    Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764鈥?779CrossRef
    Fumagalli M, Sanchez F, Molina Boisseau S, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309鈥?1317CrossRef
    Guigo N, Mazeau K, Putaux J-L, Heux L (2014) Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21:4119鈥?133CrossRef
    Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519鈥?542CrossRef
    Habibi Y, Chanzy H, Vignon MR (2006) Tempo-mediated surface oxidation of cellulose whiskers. Cellulose 13:679鈥?87CrossRef
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479鈥?500CrossRef
    Heux L, Dinand E, Vignon MR (1999) Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydr Polym 40:115鈥?24CrossRef
    Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from tempo-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670鈥?672CrossRef
    Jackson EL, Hudson CS (1937) Application of the cleavage type of oxidation by periodic acid to starch and cellulose. J Am Chem Soc 59:2049鈥?050CrossRef
    Jackson EL, Hudson CS (1938) The structure of the products of the periodic acid oxidation of starch and cellulose. J Am Chem Soc 60:989鈥?91CrossRef
    Kasai W, Morooka T, Ek M (2014) Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21:769鈥?76CrossRef
    Kim U-J, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79鈥?5CrossRef
    Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488鈥?92CrossRef
    Lagerwall JPF, Sch眉tz C, Salajkova M, Noh J, Park JH, Scalia G, Bergstr枚m L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80CrossRef
    Larsson P, Gim氓ker M, W氓gberg L (2008) The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper. Cellulose 15:837鈥?47CrossRef
    Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632鈥?33CrossRef
    Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from tempo-mediated oxidation. Macromolecules 38:1665鈥?671CrossRef
    Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Mag Reson 15:21鈥?9CrossRef
    Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191鈥?206CrossRef
    Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170鈥?72CrossRef
    Revol J-F, Godbout L, Dong XM, Gray D-G, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16:127鈥?34CrossRef
    Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25鈥?3CrossRef
    Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671鈥?677CrossRef
    Ruiz MM, Cavaill茅 JY, Dufresne A, G茅rard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interf 7:117鈥?31CrossRef
    Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111鈥?27CrossRef
    Spedding H (1960) Infrared spectra of periodate-oxidized cellulose. J Chem Soc 628:3147鈥?152
    Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055鈥?061CrossRef
    Tingaut P, Zimmermann T, S猫be G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105鈥?0111CrossRef
    VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state carbon-13 nmr. Macromolecules 17:1465鈥?472CrossRef
    Visanko M, Liimatainen H, Sirvi枚 JA, Heiskanen JP, Niinim盲ki J, Hormi O (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil鈥搘ater stabilizer. Biomacromolecules 15:2769鈥?775CrossRef
    Yang H, Tejado A, Alam N, Antal M, van de Ven TGM (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834鈥?842CrossRef
    Yang H, Alam MN, van de Ven TGM (2013a) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20:1865鈥?875CrossRef
    Yang X, Bakaic E, Hoare T, Cranston ED (2013b) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14:4447鈥?455CrossRef
    Yang H, Chen D, van de Ven TGM (2015) Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22:1743鈥?752CrossRef
    Zhao H, Heindel ND (1991) Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res 8:400鈥?02CrossRef
  • 作者单位:Firas Azzam (1) (2)
    Magali Galliot (1) (2)
    Jean-Luc Putaux (1) (2)
    Laurent Heux (1) (2)
    Bruno Jean (1) (2)

    1. Univ. Grenoble Alpes, CERMAV, 38000, Grenoble, France
    2. CNRS, CERMAV, 38000, Grenoble, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Cellulose nanocrystals (CNCs) were first submitted to periodate oxidation for increasing reaction times and subsequently to reductive amination with water-soluble amine-terminated polymers. The morphology and chemical properties of the samples were characterized by imaging (TEM), spectroscopic (FTIR and 13C solid-state NMR), and scattering techniques (DLS and WAXS). The data revealed that the periodate oxidation of CNCs resulted in an increase in the degree of oxidation (DO) with reaction time and that most of the created carbonyls were converted into hemiacetals as a result of their interaction with vicinal hydroxyl groups. Like in the case of cellulose microfibrils, CNCs were oxidized from the surface to the core of the particles. For low reaction times and concomitant low DOs, the morphology and crystallinity of the CNCs were mildly altered. A prolonged oxidation resulted in the separation of the originally laterally assembled crystallites and the data are consistent with the presence of dangling chains resulting from the cleavage of glucosyl units at the surface of the thin elongated cellulose nanoparticles. A comparison with literature data further showed that the oxidation reaction was not primarily governed by the degree of crystallinity. Remarkably, after reductive amination with water-soluble polymer chains, thin unoxidized crystalline cellulose nanoparticles were recovered. This situation seems to result from the surface peeling of the CNCs due to reaction of surface-oxidized dangling chains with water-soluble polymers and their subsequent solubilization. Keywords Cellulose nanocrystals Periodate oxidation Reductive amination Peeling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700