Modification of Astrocyte Metabolism as an Approach to the Treatment of Epilepsy: Triheptanoin and Acetyl-l-Carnitine
详细信息    查看全文
  • 作者:Mussie Ghezu Hadera ; Tanya McDonald ; Olav B. Smeland…
  • 关键词:Acetyl ; l ; carnitine ; Triheptanoin ; Epilepsy ; Neurons ; Astrocytes ; Metabolism ; Glucose
  • 刊名:Neurochemical Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:1-2
  • 页码:86-95
  • 全文大小:479 KB
  • 参考文献:1.Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367(9516):1087–1100. doi:10.​1016/​S0140-6736(06)68477-8 CrossRef PubMed
    2.Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, Hesdorffer DC, Hauser WA, Kazis L, Kobau R, Kroner B, Labiner D, Liow K, Logroscino G, Medina MT, Newton CR, Parko K, Paschal A, Preux PM, Sander JW, Selassie A, Theodore W, Tomson T, Wiebe S (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(Suppl 7):2–26. doi:10.​1111/​j.​1528-1167.​2011.​03121.​x CrossRef PubMed
    3.Giblin KA, Blumenfeld H (2010) Is epilepsy a preventable disorder? New evidence from animal models. Neuroscientist 16(3):253–275. doi:10.​1177/​1073858409354385​ CrossRef PubMed PubMedCentral
    4.Schmidt D, Loscher W (2005) Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 46(6):858–877. doi:10.​1111/​j.​1528-1167.​2005.​54904.​x CrossRef PubMed
    5.Engel J Jr (2001) Mesial temporal lobe epilepsy: what have we learned? Neuroscientist 7(4):340–352CrossRef PubMed
    6.Ryvlin P, Cross JH, Rheims S (2014) Epilepsy surgery in children and adults. Lancet Neurol 13(11):1114–1126. doi:10.​1016/​S1474-4422(14)70156-5 CrossRef PubMed
    7.Stafstrom CE, Rho JM (2010) Epilepsy and the ketogenic diet. Humana Press, New York
    8.Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM (1998) The efficacy of the ketogenic diet-1998: a prospective evaluation of intervention in 150 children. Pediatrics 102(6):1358–1363CrossRef PubMed
    9.Buckmaster PS (2004) Laboratory animal models of temporal lobe epilepsy. Comp Med 54(5):473–485PubMed
    10.Hammer J, Alvestad S, Osen KK, Skare O, Sonnewald U, Ottersen OP (2008) Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic phase in the kainate model of temporal lobe epilepsy. Glia 56(8):856–868. doi:10.​1002/​glia.​20659 CrossRef PubMed
    11.Andre V, Dube C, Francois J, Leroy C, Rigoulot MA, Roch C, Namer IJ, Nehlig A (2007) Pathogenesis and pharmacology of epilepsy in the lithium–pilocarpine model. Epilepsia 48(Suppl 5):41–47. doi:10.​1111/​j.​1528-1167.​2007.​01288.​x CrossRef PubMed
    12.Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG, Wainer BH, Dingledine R (2003) Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol 182(1):21–34CrossRef PubMed
    13.Klitgaard H, Matagne A, Gobert J, Wulfert E (1998) Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol 353(2–3):191–206CrossRef PubMed
    14.Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M (1963) Pharmacodynamic properties of N-dipropylacetic acid. Therapie 18:435–438PubMed
    15.Klepper J (2008) Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia 49(Suppl 8):46–49. doi:10.​1111/​j.​1528-1167.​2008.​01833.​x CrossRef PubMed
    16.Pascual JM, Liu P, Mao D, Kelly DI, Hernandez A, Sheng M, Good LB, Ma Q, Marin-Valencia I, Zhang X, Park JY, Hynan LS, Stavinoha P, Roe CR, Lu H (2014) Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol 71(10):1255–1265. doi:10.​1001/​jamaneurol.​2014.​1584 CrossRef PubMed PubMedCentral
    17.Arnold S, Schlaug G, Niemann H, Ebner A, Luders H, Witte OW, Seitz RJ (1996) Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 46(5):1422–1430CrossRef PubMed
    18.Henry TR, Mazziotta JC, Engel J Jr (1993) Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol 50(6):582–589CrossRef PubMed
    19.Henry TR, Mazziotta JC, Engel J Jr, Christenson PD, Zhang JX, Phelps ME, Kuhl DE (1990) Quantifying interictal metabolic activity in human temporal lobe epilepsy. J Cereb Blood Flow Metab 10(5):748–757. doi:10.​1038/​jcbfm.​1990.​128 CrossRef PubMed
    20.Dube C, Boyet S, Marescaux C, Nehlig A (2001) Relationship between neuronal loss and interictal glucose metabolism during the chronic phase of the lithium–pilocarpine model of epilepsy in the immature and adult rat. Exp Neurol 167(2):227–241. doi:10.​1006/​exnr.​2000.​7561 CrossRef PubMed
    21.Melo TM, Nehlig A, Sonnewald U (2005) Metabolism is normal in astrocytes in chronically epileptic rats: a (13)C NMR study of neuronal–glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab 25(10):1254–1264. doi:10.​1038/​sj.​jcbfm.​9600128 CrossRef PubMed
    22.Smeland OB, Hadera MG, McDonald TS, Sonnewald U, Borges K (2013) Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice. J Cereb Blood Flow Metab. doi:10.​1038/​jcbfm.​2013.​54 PubMed PubMedCentral
    23.Smeland OB, Meisingset TW, Sonnewald U (2012) Dietary supplementation with acetyl-l -carnitine in seizure treatment of pentylenetetrazole kindled mice. Neurochem Int 61(4):444–454. doi:10.​1016/​j.​neuint.​2012.​06.​008 CrossRef PubMed
    24.Van Gelder NM, Sherwin AL, Rasmussen T (1972) Amino acid content of epileptogenic human brain: focal versus surrounding regions. Brain Res 40(2):385–393CrossRef PubMed
    25.Alvestad S, Hammer J, Eyjolfsson E, Qu H, Ottersen OP, Sonnewald U (2008) Limbic structures show altered glial–neuronal metabolism in the chronic phase of kainate induced epilepsy. Neurochem Res 33(2):257–266. doi:10.​1007/​s11064-007-9435-5 CrossRef PubMed
    26.Kuzniecky R, Palmer C, Hugg J, Martin R, Sawrie S, Morawetz R, Faught E, Knowlton R (2001) Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss? Arch Neurol 58(12):2048–2053CrossRef PubMed
    27.During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341(8861):1607–1610CrossRef PubMed
    28.Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57(2):226–235. doi:10.​1002/​ana.​20380 CrossRef PubMed
    29.Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate–glutamine cycling in the epileptic human hippocampus. Epilepsia 43(7):703–710CrossRef PubMed
    30.Meldrum BS, Akbar MT, Chapman AG (1999) Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 36(2–3):189–204CrossRef PubMed
    31.Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363(9402):28–37CrossRef PubMed
    32.Bjornsen LP, Hadera MG, Zhou Y, Danbolt NC, Sonnewald U (2014) The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse. J Neurochem 128(5):641–649. doi:10.​1111/​jnc.​12509 CrossRef PubMed
    33.Bjornsen LP, Eid T, Holmseth S, Danbolt NC, Spencer DD, de Lanerolle NC (2007) Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis 25(2):319–330. doi:10.​1016/​j.​nbd.​2006.​09.​014 CrossRef PubMed
    34.Borges K, Sonnewald U (2012) Triheptanoin—a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment? Epilepsy Res 100(3):239–244. doi:10.​1016/​j.​eplepsyres.​2011.​05.​023 CrossRef PubMed PubMedCentral
    35.Binder DK, Steinhauser C (2006) Functional changes in astroglial cells in epilepsy. Glia 54(5):358–368. doi:10.​1002/​glia.​20394 CrossRef PubMed
    36.Seifert G, Steinhauser C (2011) Neuron-astrocyte signaling and epilepsy. Exp Neurol. doi:10.​1016/​j.​expneurol.​2011.​08.​024 PubMed
    37.Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195(4284):1356–1358CrossRef PubMed
    38.Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nat Med 11(9):973–981. doi:10.​1038/​nm1277 PubMed PubMedCentral
    39.Wetherington J, Serrano G, Dingledine R (2008) Astrocytes in the epileptic brain. Neuron 58(2):168–178. doi:10.​1016/​j.​neuron.​2008.​04.​002 CrossRef PubMed PubMedCentral
    40.Kornberg H (1966) Anaplerotic sequences and their role in metabolism. Essays Biochem 2:1–31CrossRef
    41.Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22(5):717–724CrossRef PubMed
    42.Sonnewald U, Rae C (2010) Pyruvate carboxylation in different model systems studied by (13)C MRS. Neurochem Res 35(12):1916–1921. doi:10.​1007/​s11064-010-0257-5 CrossRef PubMed PubMedCentral
    43.Nuutinen EM, Peuhkurinen KJ, Pietilainen EP, Hiltunen JK, Hassinen IE (1981) Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium. Biochem J 194(3):867–875CrossRef PubMed PubMedCentral
    44.Martini WZ, Stanley WC, Huang H, Rosiers CD, Hoppel CL, Brunengraber H (2003) Quantitative assessment of anaplerosis from propionate in pig heart in vivo. Am J Physiol Endocrinol Metab 284(2):E351–E356. doi:10.​1152/​ajpendo.​00354.​2002 CrossRef PubMed
    45.Reszko AE, Kasumov T, Pierce BA, David F, Hoppel CL, Stanley WC, Des Rosiers C, Brunengraber H (2003) Assessing the reversibility of the anaplerotic reactions of the propionyl-CoA pathway in heart and liver. J Biol Chem 278(37):34959–34965. doi:10.​1074/​jbc.​M302013200 CrossRef PubMed
    46.Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277(34):30409–30412. doi:10.​1074/​jbc.​R200006200 CrossRef PubMed
    47.Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7(6):500–506. doi:10.​1016/​S1474-4422(08)70092-9 CrossRef PubMed
    48.Mochel F, DeLonlay P, Touati G, Brunengraber H, Kinman RP, Rabier D, Roe CR, Saudubray JM (2005) Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 84(4):305–312. doi:10.​1016/​j.​ymgme.​2004.​09.​007 CrossRef PubMed
    49.Roe CR, Bottiglieri T, Wallace M, Arning E, Martin A (2010) Adult polyglucosan body disease (APBD): anaplerotic diet therapy (Triheptanoin) and demonstration of defective methylation pathways. Mol Genet Metab 101(2–3):246–252. doi:10.​1016/​j.​ymgme.​2010.​06.​017 CrossRef PubMed
    50.Papamandjaris AA, MacDougall DE, Jones PJ (1998) Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62(14):1203–1215CrossRef PubMed
    51.Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H (2006) Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab 291(4):E860–E866CrossRef PubMed
    52.Gu L, Zhang GF, Kombu RS, Allen F, Kutz G, Brewer WU, Roe CR, Brunengraber H (2010) Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile. Am J Physiol Endocrinol Metab 298(2):E362–E371. doi:10.​1152/​ajpendo.​00384.​2009 CrossRef PubMed PubMedCentral
    53.Marin-Valencia I, Good LB, Ma Q, Malloy CR, Pascual JM (2013) Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain. J Cereb Blood Flow Metab 33(2):175–182. doi:10.​1038/​jcbfm.​2012.​151 CrossRef PubMed PubMedCentral
    54.Roe CR, Mochel F (2006) Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential. J Inherit Metab Dis 29(2–3):332–340. doi:10.​1007/​s10545-006-0290-3 CrossRef PubMed
    55.Willis S, Stoll J, Sweetman L, Borges K (2010) Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis 40(3):565–572. doi:10.​1016/​j.​nbd.​2010.​07.​017 CrossRef PubMed PubMedCentral
    56.Thomas NK, Willis S, Sweetman L, Borges K (2012) Triheptanoin in acute mouse seizure models. Epilepsy Res 99(3):312–317. doi:10.​1016/​j.​eplepsyres.​2011.​12.​013 CrossRef PubMed
    57.McDonald TS, Tan KN, Hodson MP, Borges K (2014) Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides. J Cereb Blood Flow Metab 34(1):153–160. doi:10.​1038/​jcbfm.​2013.​184 CrossRef PubMed PubMedCentral
    58.Kim TH, Borges K, Petrou S, Reid CA (2013) Triheptanoin reduces seizure susceptibility in a syndrome-specific mouse model of generalized epilepsy. Epilepsy Res 103(1):101–105. doi:10.​1016/​j.​eplepsyres.​2012.​09.​016 CrossRef PubMed
    59.de Almeida Rabello Oliveira M, da Rocha Ataide T, de Oliveira SL, de Melo Lucena AL, de Lira CE, Soares AA, de Almeida CB, Ximenes-da-Silva A (2008) Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci Lett 434(1):66–70. doi:10.​1016/​j.​neulet.​2008.​01.​032 CrossRef PubMed
    60.Adanyeguh IM, Rinaldi D, Henry PG, Caillet S, Valabregue R, Durr A, Mochel F (2015) Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology 84(5):490–495. doi:10.​1212/​WNL.​0000000000001214​ CrossRef PubMed PubMedCentral
    61.Mochel F, Duteil S, Marelli C, Jauffret C, Barles A, Holm J, Sweetman L, Benoist JF, Rabier D, Carlier PG, Durr A (2010) Dietary anaplerotic therapy improves peripheral tissue energy metabolism in patients with Huntington’s disease. Eur J Hum Genet 18(9):1057–1060. doi:10.​1038/​ejhg.​2010.​72 CrossRef PubMed PubMedCentral
    62.Hadera MG, Smeland OB, McDonald TS, Tan KN, Sonnewald U, Borges K (2014) Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy. J Neurochem 129(1):107–119. doi:10.​1111/​jnc.​12610 CrossRef PubMed
    63.Benson MJ, Manzanero S, Borges K (2015) Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 56(6):895–905. doi:10.​1111/​epi.​12960 CrossRef PubMed
    64.Parnetti L, Gaiti A, Mecocci P, Cadini D, Senin U (1992) Pharmacokinetics of IV and oral acetyl-l -carnitine in a multiple dose regimen in patients with senile dementia of Alzheimer type. Eur J Clin Pharmacol 42(1):89–93CrossRef PubMed
    65.Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J, Nikaido H, Hashimoto N, Asano M, Tsuji A (2001) Functional relevance of carnitine transporter OCTN2 to brain distribution of l -carnitine and acetyl-l -carnitine across the blood–brain barrier. J Neurochem 79(5):959–969CrossRef PubMed
    66.Januszewicz E, Bekisz M, Mozrzymas JW, Nalecz KA (2010) High affinity carnitine transporters from OCTN family in neural cells. Neurochem Res 35(5):743–748. doi:10.​1007/​s11064-010-0131-5 CrossRef PubMed
    67.Januszewicz E, Pajak B, Gajkowska B, Samluk L, Djavadian RL, Hinton BT, Nalecz KA (2009) Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up-regulated by peroxisome proliferators-activator receptor agonist. Int J Biochem Cell Biol 41(12):2599–2609. doi:10.​1016/​j.​biocel.​2009.​08.​020 CrossRef PubMed
    68.Malaguarnera M (2012) Carnitine derivatives: clinical usefulness. Curr Opin Gastroenterol 28(2):166–176. doi:10.​1097/​MOG.​0b013e3283505a3b​ CrossRef PubMed
    69.Bartlett K, Eaton S (2004) Mitochondrial beta-oxidation. Eur J Biochem 271(3):462–469CrossRef PubMed
    70.Fritz IB (1959) Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol 197:297–304PubMed
    71.Jones LL, McDonald DA, Borum PR (2010) Acylcarnitines: role in brain. Prog Lipid Res 49(1):61–75. doi:10.​1016/​j.​plipres.​2009.​08.​004 CrossRef PubMed
    72.Scafidi S, Fiskum G, Lindauer SL, Bamford P, Shi D, Hopkins I, McKenna MC (2010) Metabolism of acetyl-l -carnitine for energy and neurotransmitter synthesis in the immature rat brain. J Neurochem 114(3):820–831. doi:10.​1111/​j.​1471-4159.​2010.​06807.​x CrossRef PubMed
    73.Yu Z, Iryo Y, Matsuoka M, Igisu H, Ikeda M (1997) Suppression of pentylenetetrazol-induced seizures by carnitine in mice. Naunyn Schmiedebergs Arch Pharmacol 355(4):545–549CrossRef PubMed
    74.Aureli T, Miccheli A, Ricciolini R, Di Cocco ME, Ramacci MT, Angelucci L, Ghirardi O, Conti F (1990) Aging brain: effect of acetyl-l -carnitine treatment on rat brain energy and phospholipid metabolism. A study by 31P and 1H NMR spectroscopy. Brain Res 526(1):108–112CrossRef PubMed
    75.Aureli T, Di Cocco ME, Puccetti C, Ricciolini R, Scalibastri M, Miccheli A, Manetti C, Conti F (1998) Acetyl-l -carnitine modulates glucose metabolism and stimulates glycogen synthesis in rat brain. Brain Res 796(1–2):75–81CrossRef PubMed
    76.Scafidi S, Racz J, Hazelton J, McKenna MC, Fiskum G (2010) Neuroprotection by acetyl-l -carnitine after traumatic injury to the immature rat brain. Dev Neurosci 32(5–6):480–487. doi:10.​1159/​000323178 PubMed
    77.Smeland OB, Meisingset TW, Borges K, Sonnewald U (2012) Chronic acetyl-l -carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem Int 61(1):100–107. doi:10.​1016/​j.​neuint.​2012.​04.​008 CrossRef PubMed
    78.Waagepetersen HS, Sonnewald U, Qu H, Schousboe A (1999) Mitochondrial compartmentation at the cellular level: astrocytes and neurons. Ann N Y Acad Sci 893:421–425CrossRef PubMed
    79.Silva-Adaya D, Perez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernandez J, Binienda Z, Ali SF, Santamaria A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of l -carnitine. J Neurochem 105(3):677–689. doi:10.​1111/​j.​1471-4159.​2007.​05174.​x CrossRef PubMed
    80.Gülçin I (2006) Antioxidant and antiradical activities of l -carnitine. Life Sci 78(8):803–811. doi:10.​1016/​j.​lfs.​2005.​05.​103 CrossRef PubMed
    81.Hansen SL, Nielsen AH, Knudsen KE, Artmann A, Petersen G, Kristiansen U, Hansen SH, Hansen HS (2009) Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus. Neurochem Int 54(3–4):199–204. doi:10.​1016/​j.​neuint.​2008.​10.​012 CrossRef PubMed
    82.Brass EP, Hoppel CL (1978) Carnitine metabolism in the fasting rat. J Biol Chem 253(8):2688–2693PubMed
    83.Hack A, Busch V, Pascher B, Busch R, Bieger I, Gempel K, Baumeister FA (2006) Monitoring of ketogenic diet for carnitine metabolites by subcutaneous microdialysis. Pediatr Res 60(1):93–96. doi:10.​1203/​01.​pdr.​0000219479.​95410.​79 CrossRef PubMed
    84.Roe CR, Sweetman L, Roe DS, David F, Brunengraber H (2002) Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 110(2):259–269. doi:10.​1172/​JCI15311 CrossRef PubMed PubMedCentral
    85.Aso E, Semakova J, Joda L, Semak V, Halbaut L, Calpena A, Escolano C, Perales JC, Ferrer I (2013) Triheptanoin supplementation to ketogenic diet curbs cognitive impairment in APP/PS1 mice used as a model of familial Alzheimer’s disease. Curr Alzheimer Res 10(3):290–297CrossRef PubMed
    86.Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Pae CU (2014) A review of current evidence for acetyl-l -carnitine in the treatment of depression. J Psychiatr Res 53:30–37. doi:10.​1016/​j.​jpsychires.​2014.​02.​005 CrossRef PubMed
    87.Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F, Battaglia G, Mathe AA, Pittaluga A, Lionetto L, Simmaco M, Nicoletti F (2013) l -Acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci USA 110(12):4804–4809. doi:10.​1073/​pnas.​1216100110 CrossRef PubMed PubMedCentral
    88.Al-Majed AA, Sayed-Ahmed MM, Al-Omar FA, Al-Yahya AA, Aleisa AM, Al-Shabanah OA (2006) Carnitine esters prevent oxidative stress damage and energy depletion following transient forebrain ischaemia in the rat hippocampus. Clin Exp Pharmacol Physiol 33(8):725–733. doi:10.​1111/​j.​1440-1681.​2006.​04425.​x CrossRef PubMed
    89.Schulz UG, Blamire AM, Corkill RG, Davies P, Styles P, Rothwell PM (2007) Association between cortical metabolite levels and clinical manifestations of migrainous aura: an MR-spectroscopy study. Brain 130(Pt 12):3102–3110. doi:10.​1093/​brain/​awm165 CrossRef PubMed
    90.Hagen K, Brenner E, Linde M, Gravdahl GB, Tronvik EA, Engstrom M, Sonnewald U, Helde G, Stovner LJ, Sand T (2015) Acetyl-l -carnitine versus placebo for migraine prophylaxis: a randomized, triple-blind, crossover study. Cephalalgia. doi:10.​1177/​0333102414566817​
    91.Pettegrew JW, Levine J, McClure RJ (2000) Acetyl-l -carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry 5(6):616–632CrossRef PubMed
    92.Hudson S, Tabet N (2003) Acetyl-l -carnitine for dementia. Cochrane Database Syst Rev. doi:10.​1002/​14651858.​CD003158 PubMed
    93.Kelley BJ, Knopman DS (2008) Alternative medicine and Alzheimer disease. Neurologist 14(5):299–306. doi:10.​1097/​NRL.​0b013e318172cf4d​ CrossRef PubMed PubMedCentral
  • 作者单位:Mussie Ghezu Hadera (1)
    Tanya McDonald (2)
    Olav B. Smeland (3)
    Tore W. Meisingset (4)
    Haytham Eloqayli (5)
    Saied Jaradat (6)
    Karin Borges (2)
    Ursula Sonnewald (7)

    1. Department of Pharmacy, College of Health Sciences, Mekelle University, Tigray, Ethiopia
    2. Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
    3. NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
    4. Department of Neurology and Clinical Neurophysiology, St. Olav’s University Hospital, Trondheim, Norway
    5. Department of Neuroscience, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
    6. Princes Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, Jordan
    7. Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Olav Kyrresgt. 3, 7489, Trondheim, Norway
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
Epilepsy is a severe neurological disorder characterized by altered electrical activity in the brain. Important pathophysiological mechanisms include disturbed metabolism and homeostasis of major excitatory and inhibitory neurotransmitters, glutamate and GABA. Current drug treatments are largely aimed at decreasing neuronal excitability and thereby preventing the occurrence of seizures. However, many patients are refractory to treatment and side effects are frequent. Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy in adults. In rodents, the pilocarpine-status epilepticus model reflects the pathology and chronic spontaneous seizures of TLE and the pentylenetetrazole kindling model exhibits chronic induced limbic seizures. Accumulating evidence from studies on TLE points to alterations in astrocytes and neurons as key metabolic changes. The present review describes interventions which alleviate these disturbances in astrocyte–neuronal interactions by supporting mitochondrial metabolism. The compounds discussed are the endogenous transport molecule acetyl-l-carnitine and the triglyceride of heptanoate, triheptanoin. Both provide acetyl moieties for oxidation in the tricarboxylic acid cycle whereas heptanoate is also provides propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis—the refilling of the tricarboxylic acid cycle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700