Study on the structural, spectroscopic, and dielectric properties of 1:2 ordered Ca3(B′Ta2)O9 (B′ = Mg and Zn)
详细信息    查看全文
文摘
Herein, we report the structural, bonding, dielectric, and electrical transport properties of Ca3(MgTa2)O9 (CMT) and Ca3(ZnTa2)O9 (CZT) with the chemical formula Ca(Mg1/3Ta2/3)O3 and Ca(Zn1/3Ta2/3)O3, respectively, synthesized by the solid-state reaction technique. The Rietveld refinement of powder X-ray diffraction (PXRD) patterns has confirmed that the CMT and CZT are triple perovskites belonging to monoclinic P21/c space group with 1:2 B-site ordering. The unit cell contains four formula units of CMT and CZT. The results of the structural study are corroborated by Fourier transform infrared (FTIR) and Raman spectroscopic studies. Comparing the crystal structures of 1:2 ordered perovskites with the chemical formula Ba(B′1/3B″2/3)O3 and Ca(B′1/3B″2/3)O3, we have predicted that for this group of perovskites, only calcium-based systems exhibit a monoclinic crystal structure of P21/c space group due to the smaller ionic radii of Ca2+ compared to those of Ba2+. The grain size ranges between 0.38 and 2.66 μm for CMT and 0.11 and 1.60 μm for CZT, respectively. The analysis of the dielectric permittivity in the framework of the modified Cole-Cole model has revealed that the dielectric relaxation in CMT and CZT is strongly temperature dependent and polydispersive in nature. The activation energies associated with dielectric and electrical transport properties are ≈0.35 and 0.33 eV for CMT and CZT, respectively. The polaron hopping governs the electrical and dielectric response of the samples. It has been found that CMT and CZT exhibit enhancement in dielectric properties compared to their niobate counterparts and 1:1 ordered tantalum-based perovskite oxides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700