The effect of regadenoson-induced transient disruption of the blood–brain barrier on temozolomide delivery to normal rat brain
详细信息    查看全文
  • 作者:Sadhana Jackson ; Nicole M. Anders ; Antonella Mangraviti…
  • 关键词:Blood–brain barrier ; Regadenoson ; Temozolomide ; Brain tumor ; Brain metastases ; Pharmacology
  • 刊名:Journal of Neuro-Oncology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:126
  • 期:3
  • 页码:433-439
  • 全文大小:417 KB
  • 参考文献:1.Neuwelt EA (2004) Mechanisms of disease: the blood–brain barrier. Neurosurgery 54:131–140 (Discussion 141–142)PubMed CrossRef
    2.Pardridge WM (2015) Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv 12:207–222. doi:10.​1517/​17425247.​2014.​952627 PubMed CrossRef
    3.Kroll RA, Neuwelt EA (1998) Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42:1083–1099 (Discussion 1099–1100)PubMed CrossRef
    4.Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 15:2887–2893. doi:10.​1245/​s10434-008-0048-2 PubMed CrossRef
    5.White E, Bienemann A, Pugh J, Castrique E, Wyatt M, Taylor H, Cox A, McLeod C, Gill S (2012) An evaluation of the safety and feasibility of convection-enhanced delivery of carboplatin into the white matter as a potential treatment for high-grade glioma. J Neurooncol 108:77–88. doi:10.​1007/​s11060-012-0833-4 PubMed CrossRef
    6.Chowdhary SA, Ryken T, Newton HB (2015) Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neurooncol 122:367–382. doi:10.​1007/​s11060-015-1724-2 PubMed PubMedCentral CrossRef
    7.Neuwelt EA, Frenkel EP, Diehl JT, Maravilla KR, Vu LH, Clark WK, Rapoport SI, Barnett PA, Hill SA, Lewis SE et al (1979) Osmotic blood–brain barrier disruption: a new means of increasing chemotherapeutic agent delivery. Trans Am Neurol Assoc 104:256–260PubMed
    8.Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, Unsgaard G, Kuurne T (1997) Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 41:44–48 (Discussion 48–49)PubMed CrossRef
    9.Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G, The Polymer
    ain Tumor Treatment Group (1995) Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345:1008–1012PubMed CrossRef
    10.Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O (2004) Modulation of the blood–brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 30:415–423. doi:10.​1016/​j.​ctrv.​2004.​04.​001 PubMed CrossRef
    11.Elliott PJ, Hayward NJ, Dean RL, Blunt DG, Bartus RT (1996) Intravenous RMP-7 selectively increases uptake of carboplatin into rat brain tumors. Cancer Res 56:3998–4005PubMed
    12.Warren K, Jakacki R, Widemann B, Aikin A, Libucha M, Packer R, Vezina G, Reaman G, Shaw D, Krailo M et al (2006) Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: a report from the Children’s Oncology Group. Cancer Chemother Pharmacol 58:343–347. doi:10.​1007/​s00280-005-0172-7 PubMed CrossRef
    13.Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS (2011) Adenosine receptor signaling modulates permeability of the blood–brain barrier. J Neurosci 31:13272–13280. doi:10.​1523/​JNEUROSCI.​3337-11.​2011 PubMed PubMedCentral CrossRef
    14.Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552PubMed
    15.Marala RB, Mustafa SJ (1998) Immunological characterization of adenosine A2A receptors in human and porcine cardiovascular tissues. J Pharmacol Exp Ther 286:1051–1057PubMed
    16.Kassner A, Thornhill R (2011) Measuring the integrity of the human blood–brain barrier using magnetic resonance imaging. Methods Mol Biol 686:229–245. doi:10.​1007/​978-1-60761-938-3_​10 PubMed CrossRef
    17.Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, Lieu H, Mahmarian JJ, Olmsted A, Underwood SR et al (2007) Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 14:645–658
    18.Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996
    19.Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15:7092–7098. doi:10.​1158/​1078-0432.​CCR-09-1349 PubMed PubMedCentral CrossRef
    20.Ostermann S, Csajka C, Buclin T, Leyvraz S, Lejeune F, Decosterd LA, Stupp R (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10:3728–3736. doi:10.​1158/​1078-0432.​CCR-03-0807 PubMed CrossRef
    21.Doolittle ND, Muldoon LL, Culp AY, Neuwelt EA (2014) Delivery of chemotherapeutics across the blood–brain barrier: challenges and advances. Adv Pharmacol 71:203–243. doi:10.​1016/​bs.​apha.​2014.​06.​002 PubMed CrossRef
    22.Vykhodtseva N, McDannold N, Hynynen K (2008) Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics 48:279–296. doi:10.​1016/​j.​ultras.​2008.​04.​004 PubMed PubMedCentral CrossRef
    23.Grossman R, Tyler B, Rudek MA, Kim E, Zadnik P, Khan U, Blakeley JO, Pathak AP, Brem H (2013) Microdialysis measurement of intratumoral temozolomide concentration after cediranib, a pan-VEGF receptor tyrosine kinase inhibitor, in a U87 glioma model. Cancer Chemother Pharmacol 72:93–100. doi:10.​1007/​s00280-013-2172-3 PubMed PubMedCentral CrossRef
    24.Zhou Q, Guo P, Wang X, Nuthalapati S, Gallo JM (2007) Preclinical pharmacokinetic and pharmacodynamic evaluation of metronomic and conventional temozolomide dosing regimens. J Pharmacol Exp Ther 321:265–275
    25.Denny BJ, Wheelhouse RT, Stevens MF, Tsang LL, Slack JA (1994) NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 33:9045–9051PubMed CrossRef
    26.Rudek MA, Donehower RC, Statkevich P, Batra VK, Cutler DL, Baker SD (2004) Temozolomide in patients with advanced cancer: phase I and pharmacokinetic study. Pharmacotherapy 24:16–25PubMed CrossRef
    27.Tator CH, Morley TP, Olszewski J (1965) A study of the factors responsible for the accumulation of radioactive iodinated human serum albumin (Rihsa) by intracranial tumours and other lesions. J Neurosurg 22:60–76. doi:10.​3171/​jns.​1965.​22.​1.​0060 PubMed CrossRef
    28.Neuwelt EA, Varallyay CG, Manninger S, Solymosi D, Haluska M, Hunt MA, Nesbit G, Stevens A, Jerosch-Herold M, Jacobs PM et al (2007) The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 60:601–611. doi:10.​1227/​01.​NEU.​0000255350.​71700.​37 (Discussion 611–612)PubMed CrossRef
    29.Hossmann KA, Bothe HW, Bodsch W, Paschen W (1983) Pathophysiological aspects of blood–brain barrier disturbances in experimental brain tumors and brain abscesses. Acta Neuropathol Suppl 8:89–102PubMed CrossRef
    30.Salcman M, Scott EW, Schepp RS, Knipp HC, Broadwell RD (1982) Transplantable canine glioma model for use in experimental neuro-oncology. Neurosurgery 11:372–381PubMed CrossRef
  • 作者单位:Sadhana Jackson (1)
    Nicole M. Anders (2)
    Antonella Mangraviti (3)
    Teresia M. Wanjiku (2)
    Eric W. Sankey (3)
    Ann Liu (3)
    Henry Brem (3) (4)
    Betty Tyler (3)
    Michelle A. Rudek (2)
    Stuart A. Grossman (1)

    1. Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
    2. Chemical Therapeutics and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
    3. Department of Neurosurgery, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
    4. Departments of Ophthalmology, Oncology and Biomedical Engineering, School of Medicine, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 2M45, Baltimore, MD, 21287, USA
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
  • 出版者:Springer Netherlands
  • ISSN:1573-7373
文摘
The blood–brain barrier (BBB) significantly reduces the delivery of many systemically administered agents to the central nervous system. Although temozolomide is the only chemotherapy to improve survival in patients with glioblastoma, its concentration in brain is only 20 % of that in blood. Regadenoson, an FDA approved adenosine receptor agonist used for cardiac stress testing, transiently disrupts rodent BBB allowing high molecular weight dextran (70 kD) to enter the brain. This study was conducted to determine if regadenoson could facilitate entry of temozolomide into normal rodent brain. Temozolomide (50 mg/kg) was administered by oral gavage to non-tumor bearing F344 rats. Two-thirds of the animals received a single dose of intravenous regadenoson 60–90 min later. All animals were sacrificed 120 or 360 min after temozolomide administration. Brain and plasma temozolomide concentrations were determined using HPLC/MS/MS. Brain temozolomide concentrations were significantly higher at 120 min when it was given with regadenoson versus alone (8.1 ± 2.7 and 5.1 ± 3.5 µg/g, P < 0.05). A similar trend was noted in brain:plasma ratios (0.45 ± 0.08 and 0.29 ± 0.09, P < 0.05). Brain concentrations and brain:plasma ratios were not significantly different 360 min after temozolomide administration. No differences were seen in plasma temozolomide concentrations with or without regadenoson. These results suggest co-administration of regadenoson with temozolomide results in 60 % higher temozolomide levels in normal brain without affecting plasma concentrations. This novel approach to increasing intracranial concentrations of systemically administered agents has potential to improve the efficacy of chemotherapy in neuro-oncologic disorders. Keywords Blood–brain barrier Regadenoson Temozolomide Brain tumor Brain metastases Pharmacology

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700