Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle
详细信息    查看全文
  • 作者:Mohammed K Abo-Ismail (1) (2)
    Gordon Vander Voort (1)
    James J Squires (1)
    Kendall C Swanson (1) (3)
    Ira B Mandell (1)
    Xiaoping Liao (4)
    Paul Stothard (4)
    Stephen Moore (5)
    Graham Plastow (4)
    Stephen P Miller (1) (4) (5) (6)
  • 关键词:Candidate genes ; Single nucleotide polymorphism ; Feed efficiency ; Carcass traits
  • 刊名:BMC Genetics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:271 KB
  • 参考文献:1. Wulfhorst JD, Ahola JK, Kane SL, Keenan LD, Hill RA: Factors affecting beef cattle producer perspectives on feed efficiency. / J Anim Sci 2010,88(11):3749-758. CrossRef
    2. Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. / Genetics 2001,157(4):1819-829.
    3. Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O’Connell J, Moore SS, Smith TP, Sonstegard TS, / et al.: Development and characterization of a high density SNP genotyping assay for cattle. / PLoS One 2009,4(4):e5350. CrossRef
    4. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME: Invited review: genomic selection in dairy cattle: progress and challenges. / J Dairy Sci 2009,92(2):433-43. CrossRef
    5. Dekkers JC, Hospital F: The use of molecular genetics in the improvement of agricultural populations. / Nat Rev Genet 2002,3(1):22-2. CrossRef
    6. Nkrumah JD, Sherman EL, Li C, Marques E, Crews DH Jr, Bartusiak R, Murdoch B, Wang Z, Basarab JA, Moore SS: Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle. / J Anim Sci 2007,85(12):3170-181. CrossRef
    7. Barendse W, Reverter A, Bunch RJ, Harrison BE, Barris W, Thomas MB: A validated whole-genome association study of efficient food conversion in cattle. / Genetics 2007,176(3):1893-905. CrossRef
    8. Sherman EL, Nkrumah JD, Moore SS: Whole genome single nucleotide polymorphism associations with feed intake and feed efficiency in beef cattle. / J Anim Sci 2010,88(1):16-2. CrossRef
    9. Bolormaa S, Hayes BJ, Savin K, Hawken R, Barendse W, Arthur PF, Herd RM, Goddard ME: Genome-wide association studies for feedlot and growth traits in cattle. / J Anim Sci 2011,89(6):1684-697. CrossRef
    10. Mujibi FD, Nkrumah JD, Durunna ON, Grant JR, Mah J, Wang Z, Basarab J, Plastow G, Crews DH Jr, Moore SS: Associations of marker panel scores with feed intake and efficiency traits in beef cattle using preselected single nucleotide polymorphisms. / J Anim Sci 2011,89(11):3362-371. CrossRef
    11. Snelling WM, Allan MF, Keele JW, Kuehn LA, Thallman RM, Bennett GL, Ferrell CL, Jenkins TG, Freetly HC, Nielsen MK, / et al.: Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle. / J Anim Sci 2011,89(6):1731-741. CrossRef
    12. Abo-Ismail MK, Squires EJ, Swanson KC, Lu D, Wang Z, Mah J, Plastow G, Moore SS, Miller SP: Fine mapping QTL and candidate genes discovery for residual feed intake on Chromosomes 5, 15, 16, and 19 in beef cattle. In / Proceedings of the 9th World Congress on Genetics Applied to Livestock Production: 1- August 2010; Leipzig Edited by: German Society for Animal Science. 2010, 0783.
    13. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team. tRDC: nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-02. 2011.
    14. Arthur PF, Renand G, Krauss D: Genetic and phenotypic relationships among different measures of growth and feed efficiency in young Charolais bulls. / Livest Prod Sci 2001,68(2):131-39. CrossRef
    15. Bergen R, Miller SP, Mandell IB, Robertson WM: Use of live ultrasound, weight and linear measurements to predict carcass composition of young beef bulls. / Can J Anim Sci 2005,85(1):23-5. CrossRef
    16. Sequencing TBG, Consortium A, Elsik CG, Tellam RL, Worley KC: The genome sequence of taurine cattle: a window to ruminant biology and evolution. / Science 2009,324(5926):522-28.
    17. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. / Genome Res 2008,18(11):1851-858. CrossRef
    18. Grant JR, Arantes AS, Liao X, Stothard P: In-depth annotation of SNPs arising from resequencing projects using NGS-SNP. / Bioinformatics 2011,27(16):2300-301. CrossRef
    19. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM: GenABEL: an R library for genome-wide association analysis. / Bioinformatics (Oxford, England) 2007,23(10):1294-296. CrossRef
    20. Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R: / ASReml User Guide Release 3.0. Hemel Hempstead, HP1 1ES, UK: VSN International Ltd; 2009.
    21. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. / J R Stat Soc Ser B Methodol 1995,57(1):289-00.
    22. Fernando RL, Garrick D: GenSel—User manual for a portfolio of genomic. Selection related analyses. 2009.
    23. Scheet P, Stephens M: A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. / Am J Hum Genet 2006,78(4):629-44. CrossRef
    24. da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. / Nat Protoc 2009,4(1):44-7. CrossRef
    25. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. / Nucleic Acids Res 2010,38(Database issue):D355-D360. CrossRef
    26. Davis GP, DeNise SK: The impact of genetic markers on selection. / J Anim Sci 1998,76(9):2331-339.
    27. Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, Price MA, Wang Z, Moore SS: Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. / J Anim Sci 2006,84(1):145-53.
    28. Herd RM, Bishop SC: Genetic variation in residual feed intake and its association with other production traits in British Hereford cattle. / Livest Prod Sci 2000,63(2):111-19. CrossRef
    29. Crowley JJ, McGee M, Kenny DA, Crews DH Jr, Evans RD, Berry DP: Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls. / J Anim Sci 2010,88(3):885-94. CrossRef
    30. Schenkel FS, Miller SP, Wilton JW: Genetic parameters and breed differences for feed efficiency, growth, and body composition traits of young beef bulls. / Can J Anim Sci 2004,84(2):177-85. CrossRef
    31. Arthur PF, Archer JA, Johnston DJ, Herd RM, Richardson EC, Parnell PF: Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. / J Anim Sci 2001,79(11):2805-811.
    32. Goddard ME, Hayes BJ: Mapping genes for complex traits in domestic animals and their use in breeding programmes. / Nat Rev Genet 2009,10(6):381-91. CrossRef
    33. Sargolzaei M, Iwaisaki H, Colleau JJ: CFC: A tool for monitoring genetic diversity. In / The 8th World Congress on Genetics Applied to Livestock Production: Aug. 13-8, 2006; Belo Horizonte, Brazil Edited by: Instituto Prociência. 2006, 27-8.
    34. Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ: A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. / Mol Cell 1999,4(1):123-28. CrossRef
    35. Karam CS, Kellner WA, Takenaka N, Clemmons AW, Corces VG: 14--3 mediates histone cross-talk during transcription elongation in Drosophila. / PLoS Genet 2010,6(6):e1000975. CrossRef
    36. Singh N, Lorbeck MT, Zervos A, Zimmerman J, Elefant F: The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. / J Neurochem 2010,115(2):493-04. CrossRef
    37. Walker J, Kwon SY, Badenhorst P, East P, McNeill H, Svejstrup JQ: Role of elongator subunit Elp3 in Drosophila melanogaster larval development and immunity. / Genetics 2011,187(4):1067-075. CrossRef
    38. Schmutz SM, Berryere TG, Ciobanu DC, Mileham AJ, Schmidtz BH, Fredholm M: A form of albinism in cattle is caused by a tyrosinase frameshift mutation. / Mamm Genome 2004,15(1):62-7. CrossRef
    39. Kim S, Abboud HE, Pahl MV, Tayek J, Snyder S, Tamkin J, Alcorn H Jr, Ipp E, Nast CC, Elston RC, / et al.: Examination of association with candidate genes for diabetic nephropathy in a Mexican American population. / Clin J Am Soc Nephrol 2010,5(6):1072-078. CrossRef
    40. McClure MC, Morsci NS, Schnabel RD, Kim JW, Yao P, Rolf MM, McKay SD, Gregg SJ, Chapple RH, Northcutt SL, / et al.: A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. / Anim Genet 2010,41(6):597-07. CrossRef
    41. Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA, Nijkamp W, Hata A, Asgharzadeh S, Seeger RC, / et al.: ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. / Cancer Cell 2009,15(4):328-40. CrossRef
    42. Ashwell MS, Heyen DW, Sonstegard TS, Van Tassell CP, Da Y, VanRaden PM, Ron M, Weller JI, Lewin HA: Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. / J Dairy Sci 2004,87(2):468-75. CrossRef
    43. Lu G, Ren S, Korge P, Choi J, Dong Y, Weiss J, Koehler C, Chen J-n, Wang Y: A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. / Genes Dev 2007,21(7):784-96. CrossRef
    44. Kelly AK, Waters SM, McGee M, Fonseca RG, Carberry C, Kenny DA: mRNA expression of genes regulating oxidative phosphorylation in the muscle of beef cattle divergently ranked on residual feed intake. / Physiol Genomics 2011,43(1):12-3. CrossRef
    45. Kelly DP, Scarpulla RC: Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. / Genes Dev 2004,18(4):357-68. CrossRef
    46. Kolath WH, Kerley MS, Golden JW, Keisler DH: The relationship between mitochondrial function and residual feed intake in Angus steers. / J Anim Sci 2006,84(4):861-65.
    47. Patel K, Scrimieri F, Ghosh S, Zhong J, Kim M-S, Ren YR, Morgan RA, Iacobuzio-Donahue CA, Pandey A, Kern SE: FAM190A deficiency creates a cell division defect. / Am J Pathol 2013,183(1):296-03. CrossRef
    48. K?rst S, Cheng R, Schmitt AO, Yang H, de Villena FPM, Palmer AA, Brockmann GA: Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass. / Mamm Genome 2011,22(9-0):530-43. CrossRef
    49. Zhang Y, Guo X, Wu A: Association between a Novel Mutation in-lt;?italic-gt;?SLC20A2</italic-gt;?and Familial Idiopathic Basal Ganglia Calcification. / PLoS One 2013,8(2):e57060. CrossRef
    50. Gutiérrez-Gil B, Williams JL, Homer D, Burton D, Haley CS, Wiener P: Search for quantitative trait loci affecting growth and carcass traits in a cross population of beef and dairy cattle. / J Anim Sci 2009,87(1):24-6. CrossRef
    51. Lee YH, Song GG: Pathway analysis of genome-wide association studies on uric acid concentrations. / Hum Immunol 2012,73(8):805-10. CrossRef
    52. Richardson EC, Herd RM: Biological basis for variation in residual feed intake in beef cattle. 2. Synthesis of results following divergent selection. / Aust J Exp Agric 2004,44(5):431-40. CrossRef
    53. Caton JS, Bauer ML, Hidari H: Metabolic components of energy expenditure in growing beef cattle - review. / Asian-Australasian J Animal Sci 2000,13(5):702-10.
    54. Baldwin RL, Sainz RD: Energy partitioning and modeling in animal nutrition. / Annu Rev Nutr 1995, 15:191-11. CrossRef
    55. Berndt T, Kumar R: Novel mechanisms in the regulation of phosphorus homeostasis. / Physiology (Bethesda, Md) 2009, 24:17-5. CrossRef
    56. Brown DR, DeNise SK, McDaniel RG: Mitochondrial respiratory metabolism and performance of cattle. / J Anim Sci 1988,66(6):1347-354.
    57. Desvergne B, Michalik L, Wahli W: Transcriptional Regulation of Metabolism. / Physiological Reviews 2006,86(2):465-14. CrossRef
    58. Byrne KA, Wang YH, Lehnert SA, Harper GS, McWilliam SM, Bruce HL, Reverter A: Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction. / J Anim Sci 2005,83(1):1-2.
    59. Chen Y, Gondro C, Quinn K, Herd RM, Parnell PF, Vanselow B: Global gene expression profiling reveals genes expressed differentially in cattle with high and low residual feed intake. / Anim Genet 2011,42(5):475-90. CrossRef
    60. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. / Endocr Rev 2001,22(2):153-83.
    61. Pant SD, Schenkel FS, Verschoor CP, You Q, Kelton DF, Moore SS, Karrow NA: A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle. / Genomics 2010,95(3):176-82. CrossRef
    62. Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Wind AE-v, Lee J-H, Drackley JK, Band MR, Hernandez AG, Shani M, / et al.: Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. / Genome Res 2005,15(7):936-44. CrossRef
    63. Olsen HG, Nilsen H, Hayes B, Berg PR, Svendsen M, Lien S, Meuwissen T: Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle. / BMC Genet 2007, 8:32. CrossRef
    64. Seroussi E: The concordance test emerges as a powerful tool for identifying quantitative trait nucleotides: lessons from BTA6 milk yield QTL. / Anim Genet 2009,40(2):230-34. CrossRef
    65. Akis I, Oztabak K, Gonulalp I, Mengi A, Un C: IGF-1 and IGF-1r gene polymorphisms in East Anatolian Red and South Anatolian Red cattle breeds. / Genetika 2010,46(4):497-01.
    66. Curi RA, Krauskopf MM, Hadlich JC, Fortes MRS, Vankan DM, Silva JAIIV, Oliveira HN, Mota MDS, XUhwsbspssa, pid SX, nrm-?iso: Candidate SNPs for carcass and meat traits in Nelore animals and in their crosses with Bos taurus. / Pesq Agrop Brasileira 2012, 47:294-01. CrossRef
    67. Zhang R, Li X: Association between IGF-IR, m-calpain and UCP-3 gene polymorphisms and growth traits in Nanyang cattle. / Mol Biol Rep 2011,38(3):2179-184. CrossRef
    68. Goddard ME, Hayes BJ, Meuwissen T: Genomic selection in farm animal species - lessons learnt and future perspectives. In / Proceedings of the 9th World Congress on Genetics Applied to Livestock Production: 1- August 2010; Leipzig Edited by: German Society for Animal Science. 2010, 701.
  • 作者单位:Mohammed K Abo-Ismail (1) (2)
    Gordon Vander Voort (1)
    James J Squires (1)
    Kendall C Swanson (1) (3)
    Ira B Mandell (1)
    Xiaoping Liao (4)
    Paul Stothard (4)
    Stephen Moore (5)
    Graham Plastow (4)
    Stephen P Miller (1) (4) (5) (6)

    1. Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, N1G 2W0, Canada
    2. Department of Animal and Poultry Science, Damanhour University, Damanhour, Egypt
    3. Animal Sciences Department, North Dakota State University, Fargo, ND, USA
    4. Livestock Gentec, University of Alberta, Edmonton, AB, Canada
    5. Queensland Alliance Agr & Food Innovation, University of Queensland, St Lucia, Qld, 4072, Australia
    6. Animal and Poultry Science Department, Ontario Agriculture College, University of Guelph, 50 Stone Road, Guelph, ON, N1G 2W1, Canada
  • ISSN:1471-2156
文摘
Background This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively. Results Strong evidence of associations for RFI were located on chromosomes 8, 15, 16, 18, 19, 21, and 28. The strongest association with RFI (P--.0017) was found with a newly discovered SNP located on BTA 8 within the ELP3 gene. SNPs rs41820824 and rs41821600 on BTA 16 within the gene HMCN1 were strongly associated with RFI (P--.0064 and P--.0033, respectively). A SNP located on BTA 18 within the ZNF423 gene provided strong evidence for association with RFI (P--.0028). Genomic estimated breeding values (GEBV) from 98 significant SNPs were moderately correlated (0.47) to the estimated breeding values (EBVs) from a mixed animal model. The significant (P-lt;-.05) SNPs (98) explained 26% of the genetic variance for RFI. In silico functional analysis for the genes suggested 35 and 39 biological processes and pathways, respectively for feed efficiency traits. Conclusions This study identified several positional and functional candidate genes involved in important biological mechanisms associated with feed efficiency and performance. Significant SNPs should be validated in other populations to establish their potential utilization in genetic improvement programs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700