Patterns of ambulatory dispersal in Tetranychus urticae can be associated with host plant specialization
详细信息    查看全文
  • 作者:E. Aguilar-Fenollosa ; J. Rey-Caballero ; J. M. Blasco…
  • 关键词:Two spotted spider mite ; Phytoseiidae ; Conservation biological control ; Habitat management ; Local adaptation ; Microsatellite markers
  • 刊名:Experimental and Applied Acarology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:68
  • 期:1
  • 页码:1-20
  • 全文大小:725 KB
  • 参考文献:Abad-Moyano R, Pina T, Dembilio O, Ferragut F, Urbaneja A (2009) Survey of natural enemies of spider mites (Acari: Tetranychidae) in citrus orchards in Eastern of Spain. Exp Appl Acarol 47:49鈥?1. doi:10.鈥?007/鈥媠10493-008-9193-3 CrossRef PubMed
    Agrawal AA, Vala F, Sabelis MW (2002) Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: adaptive plasticity? Am Nat 159:553鈥?65. doi:10.鈥?086/鈥?39463 CrossRef PubMed
    Aguilar-Fenollosa E, Ib谩帽ez-Gual MV, Pascual-Ruiz S, Hurtado M, Jacas JA (2011a) Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (I): bottom-up regulation mechanisms. Biol Control 59:158鈥?70. doi:10.鈥?016/鈥媕.鈥媌iocontrol.鈥?011.鈥?6.鈥?13 CrossRef
    Aguilar-Fenollosa E, Ib谩帽ez-Gual MV, Pascual-Ruiz S, Hurtado M, Jacas JA (2011b) Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (II): top-down regulation mechanisms. Biol Control 59:171鈥?79. doi:10.鈥?016/鈥媕.鈥媌iocontrol.鈥?011.鈥?6.鈥?12 CrossRef
    Aguilar-Fenollosa E, Pascual-Ruiz S, Hurtado-Ruiz M, Jacas JA (2011c) Efficacy and economics of ground cover management as a conservation biological control strategy against Tetranychus urticae in clementine mandarin orchards. Crop Prot 30:1328鈥?333. doi:10.鈥?016/鈥媕.鈥媍ropro.鈥?011.鈥?5.鈥?11 CrossRef
    Aguilar-Fenollosa E, Pina T, G贸mez-Mart铆nez MA, Hurtado MA, Jacas JA (2012) Does host adaptation of Tetranychus urticae populations in clementine orchards with a Festuca arundinacea cover contribute to a better natural regulation of this pest mite? Entomol Exp Appl 144:181鈥?90. doi:10.鈥?111/鈥媕.鈥?570-7458.鈥?012.鈥?1276.鈥媥 CrossRef
    Agut B, Gamir J, Jacas JA, Hurtado M, Flors V (2014) Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. Pest Manag Sci 70:1728鈥?741. doi:10.鈥?002/鈥媝s.鈥?718 CrossRef PubMed
    Agut B, Gamir J, Jaques JA, Flors V (2015) Tetranychus urticae-triggered responses promote genotype-dependent conspecific repellence or attractiveness in citrus. New Phytol 207:790鈥?04. doi:10.鈥?111/鈥媙ph.鈥?3357 CrossRef PubMed
    Akaike H (1973) Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60:255鈥?65. doi:10.鈥?093/鈥媌iomet/鈥?0.鈥?.鈥?55 CrossRef
    Alonzo H (2002) State-dependent habitat selection games between predators and prey: the importance of behavioral interactions and expected lifetime reproductive success. Evol Ecol Res 4:759鈥?78
    Bailly X, Migeon A, Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about ecological factors. Biol J Linnean Soc 82:69鈥?8. doi:10.鈥?111/鈥媕.鈥?095-8312.鈥?004.鈥?0316.鈥媥 CrossRef
    Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities. Blackwell Science Ltd., OxfordCrossRef
    Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows鈩?pour la g茅n茅tique des populations. Laboratoire G茅nome, Populations, Interactions, CNRS UMR 5171, Montpellier: Universit茅 de Montpellier II
    Bolker B, Holyoak M, Krivan V, Rowe L, Schmitz O (2003) Connecting theoretical and empirical studies of traitmediated interactions. Ecology 84:1101鈥?114. doi:10.鈥?890/鈥?012-9658(2003)084[1101:鈥婥TAESO]2.鈥?.鈥婥O;2 CrossRef
    Brostr枚m G, Holmberg H (2011) glmmML: generalized linear models with clustering. R package version 0.81-8
    Carbonnelle S, Hance T, Migeon A, Baret P, Cros-Arteil S, Navajas M (2007) Microsatellite markers reveal spatial and genetic structure of Tetranychus urticae (Acari: Tetranychidae) populations along a latitudinal gradient in Europe. Exp Appl Acarol 41:225鈥?41. doi:10.鈥?007/鈥媠10493-007-9068-z CrossRef PubMed
    Clotuche G, Mailleux AC, Fernandez AA, Deneubourg JL, Detrain C, Hance T (2011) The formation of collective silk balls in the spider mite Tetranychus urticae Koch. PLoS ONE 6:e18854. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?018854 PubMedCentral CrossRef PubMed
    Clotuche G, Navajas M, Mailleux AC, Hance T (2013) Reaching the ball or missing the flight? Collective dispersal in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8:e77573. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?077573 PubMedCentral CrossRef PubMed
    Croft BA, Jung C (2001) Phytoseiid dispersal at plant to regional levels: a review with emphasis on management of Neoseiulus fallacis in diverse agroecosystems. Exp Appl Acarol 25:763鈥?84. doi:10.鈥?023/鈥婣:鈥?020406404509 CrossRef PubMed
    Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbi膰 M, Clarkh RM, Feyereisen R, Van Leeuwen T (2013) A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc Nat Acad Sci PNAS 110:E113鈥揈122. doi:10.鈥?073/鈥媝nas.鈥?213214110 CrossRef PubMed
    Dingle H (1996) Migration. The biology of life on the move. Oxford University Press, Oxford
    Dunley JE, Croft BA (1992) Dispersal and gene flow of pesticide resistance traits in phytoseiid and tetranychid mites. Exp Appl Acarol 14:313鈥?26. doi:10.鈥?007/鈥婤F01200570 CrossRef
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611鈥?620. doi:10.鈥?111/鈥媕.鈥?365-294X.鈥?005.鈥?2553.鈥媥 CrossRef PubMed
    Fellous S, Angot G, Orsucci M, Migeon A, Auger P, Olivieri I, Navajas M (2014) Combining experimental evolution and field population assays to study the evolution of host range breadth. J Evol Biol 27:911鈥?19. doi:10.鈥?111/鈥媕eb.鈥?2362 CrossRef PubMed
    Ferragut F, Santonja MC (1989) Taxonom铆a y distribuci贸n de los 谩caros del g茅nero Tetranychus Dufour 1832 (Acari: Tetranychidae) en Espa帽a. Bol San Veg Plagas 15:271鈥?81
    Fox J, Andronic L, Ash M, Boye T, Calza S, Chang A, et al (2009) Rcmdr: R Commander. R package version 1.5-4
    Fry JD (1990) Trade-offs in fitness on different hosts: evidence from a selection experiment with a phytophagous mite. Am Nat 136:569鈥?80. doi:10.鈥?086/鈥?85116 CrossRef
    Ge C, Sun J-T, Cui Y-N, Hong X-Y (2013) Rapid development of 36 polymorphic microsatellite markers for Tetranychus truncatus by transferring from Tetranychus urticae. Exp Appl Acarol 61:195鈥?012. doi:10.鈥?007/鈥媠10493-013-9684-8 CrossRef PubMed
    Grafton-Cardwell EE, Granett J, Normington SM (1991) Influence of dispersal from almonds on the population dynamics and acaricide resistance frequencies of spider mites infesting neighboring cotton. Exp Appl Acarol 10:187鈥?12. doi:10.鈥?007/鈥婤F01198650 CrossRef
    Grbi膰 M, van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbi膰 V, Osborne EJ et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487鈥?92. doi:10.鈥?038/鈥媙ature10640 CrossRef PubMed
    Guti茅rrez J (1985) Mounting techniques. In: Helle W, Sabelis M (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier Science Publishers, Amsterdam, pp 351鈥?53
    Hardman JM, Jensen KI, Franklin JL, Moreau DL (2005) Effects of dispersal, predators (Acari: Phytoseiidae), weather, and ground cover treatments on populations of Tetranychus urticae (Acari: Tetranychidae) in apple orchards. J Econ Entomol 98:862鈥?74. doi:10.鈥?603/鈥?022-0493-98.鈥?.鈥?62 CrossRef PubMed
    Hardman JM, Franklin JL, Bostanian NJ, Thistlewood HMA (2011) Effect of the width of the herbicide strip on mite dynamics in apple orchards. Exp Appl Acarol 53:215鈥?34. doi:10.鈥?007/鈥媠10493-010-9397-1 CrossRef PubMed
    Ilias A, Vontas J, Tsagkarakou A (2014) Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect Biochem Molec Biol 48:17鈥?8. doi:10.鈥?016/鈥媕.鈥媔bmb.鈥?014.鈥?2.鈥?06 CrossRef
    Jaques JA, Aguilar-Fenollosa E, Hurtado-Ruiz MA, Pina T (2015) Food web engineering to enhance biological control of T. urticae by phytoseiid mites in citrus. In: Carrillo D, Moraes GJ, Pe帽a JE (eds) Prospects for biological control of plant feeding mites and other harmful organisms. Progress in biological control, vol 19. Springer, Dordrecht, pp 251鈥?69. doi:10.鈥?007/鈥?78-3-319-15042-0_鈥?0
    Kennedy GG, Smitley DR (1985) Dispersal. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier Science Publishers, Amsterdam, pp 233鈥?42
    Lee S, Tsao R, Peterson C, Coats JR (1997) Insecticidal activity of monoterpenoids to western corn rootworm (Coleoptera: Chrysomelidae), twospotted spider mite (Acari: Tetranychidae), and house fly (Diptera: Muscidae). J Econ Entomol 90:883鈥?92. doi:10.鈥?093/鈥媕ee/鈥?0.鈥?.鈥?83 CrossRef PubMed
    Li J, Margolies DC (1994) Responses to direct and indirect selection on aerial dispersal behaviour in Tetranychus urticae. Heredity 72:10鈥?2. doi:10.鈥?038/鈥媓dy.鈥?994.鈥? CrossRef
    Li T, Chen X-L, Hong XY (2009) Population genetic structure of Tetranychus urticae and its sibling Species species Tetranychus cinnabaribus (Acari: Tetranychidae) in China as inferred from microsatellite data. Ann Entomol Soc Am 102:674鈥?83. doi:10.鈥?603/鈥?08.鈥?02.鈥?412 CrossRef
    Lima SL (2002) Putting predators back into behavioral predator-prey interactions. Trends Ecol Evol 17:70鈥?5. doi:10.鈥?016/鈥婼0169-5347(01)02393-X CrossRef
    Luttbeg B, Kerby JL (2005) Are scared prey as good as dead? Trends Ecol Evol 20:416鈥?18. doi:10.鈥?016/鈥媕.鈥媡ree.鈥?005.鈥?5.鈥?06 CrossRef PubMed
    Magalh茫es S, Forbes MR, Skororacka A, Osakabe M, Chevillon C, McCoy KD (2007) Host race formation in the Acari. Exp Appl Acarol 42:225鈥?38. doi:10.鈥?007/鈥媠10493-007-9091-0 CrossRef PubMed
    Margolies DC (1995) Evidence of selection on spider mite dispersal rates in relation to habitat persistence in agroecosystems. Entomol Exp Appl 76:105鈥?08. doi:10.鈥?111/鈥媕.鈥?570-7458.鈥?995.鈥媡b01950.鈥媥 CrossRef
    Margolies DC, Kennedy GG (1985) Movement of the twospotted spider mite, Tetranychus urticae, among hosts in a corn-peanut agroecosystem. Entomol Exp Appl 37:55鈥?1. doi:10.鈥?111/鈥媕.鈥?570-7458.鈥?985.鈥媡b03452.鈥媥 CrossRef
    Marinosci C, Magalh茫es S, Macke E, Navajas M, Carbonell D, Devaux C, Olivieri I (2015) Effects of host plant on life-history traits in the polyphagous spider mite Tetranychus urticae. Ecol Evol 5:3151鈥?158. doi:10.鈥?002/鈥媏ce3.鈥?554 PubMedCentral CrossRef PubMed
    McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291鈥?21. doi:10.鈥?146/鈥媋nnurev.鈥媏nto.鈥?2.鈥?.鈥?91 CrossRef PubMed
    Nachman G (1988) Regional persistence of locally unstable predator/prey populations. Exp Appl Acarol 5:293鈥?18. doi:10.鈥?007/鈥婤F02366099 CrossRef
    Navajas MJ, Thistlewood HMA, Lagnel J, Hughes C (1998) Microsatellite sequences are under-represented in two mite genomes. Insect Mol Biol 7:249鈥?56. doi:10.鈥?111/鈥媕.鈥?365-2583.鈥?998.鈥?0066.鈥媥 CrossRef PubMed
    Navajas M, Tsagkarakov A, Lagnel J, Perrot-Minnot MJ (2000) Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae): polymorphism, host races or sibling species? Exp Appl Acarol 24:365鈥?76. doi:10.鈥?023/鈥婣:鈥?006432604611 CrossRef PubMed
    Navajas M, Perrot-Minnot MJ, Lagnel J, Migeon A, Bourse T, Cornuet JM (2002) Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Insect Mol Biol 11:157鈥?65. doi:10.鈥?046/鈥媕.鈥?365-2583.鈥?002.鈥?0320.鈥媥 CrossRef PubMed
    Nishimura S, Hinomoto N, Takafuji A (2003) Isolation, characterization, inheritance and linkage of microsatellite markers in Tetranychus kanzawai (Acari: Tetranychidae). Exp Appl Acarol 31:93鈥?03. doi:10.鈥?007/鈥媠10493-005-0410-z CrossRef PubMed
    Pascual-Ruiz S, Aguilar-Fenollosa E, Ib谩帽ez-Gual V, Hurtado-Ruiz MA, Mart铆nez-Ferrer MT, Jacas JA (2014a) Economic threshold for Tetranychus urticae (Acari: Tetranychidae) in clementine mandarins Citrus clementina. Exp Appl Acarol 62:337鈥?62. doi:10.鈥?007/鈥媠10493-013-9744-0 CrossRef PubMed
    Pascual-Ruiz S, G贸mez-Martinez MA, Ansaloni T, Segarra-Moragues JG, Sabater-Mu帽oz B, Jacas JA, Hurtado-Ruiz MA (2014b) Genetic structure of a phytophagous mite species affected by crop practices: the case of Tetranychus urticae in clementine mandarins. Exp Appl Acarol 62:477鈥?98. doi:10.鈥?007/鈥媠10493-013-9755-x CrossRef PubMed
    Peacor SD, Werner EE (2001) The contribution of trait mediated indirect effects to the net effects of a predator. Proc Nat Acad Sci PNAS 98:3904鈥?908. doi:10.鈥?073/鈥媝nas.鈥?71061998 CrossRef PubMed
    Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? Effects of intimidation and consumption in predator-prey interactions. Ecology 86:501鈥?09. doi:10.鈥?890/鈥?4-0719 CrossRef
    Price PW (1984) Insect ecology. Wiley, New York
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945鈥?59PubMedCentral PubMed
    Relyea RA (2003) How prey respond to combined predators: a review and an empirical test. Ecology 84:1827鈥?839. doi:10.鈥?890/鈥?012-9658(2003)084[1827:鈥婬PRTCP]2.鈥?.鈥婥O;2 CrossRef
    Rousset F (2008) GENEPOP 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103鈥?06. doi:10.鈥?111/鈥媕.鈥?471-8286.鈥?007.鈥?1931.鈥媥 CrossRef
    Sabater-Mu帽oz B, Pascual-Ruiz S, G贸mez-Mart铆nez MA, Jacas JA, Hurtado MA (2012) Isolation and characterization of polymorphic microsatellite markers in Tetranychus urticae and cross amplification in other Tetranychidae and Phytoseiidae species of economic importance. Exp Appl Acarol 57:37鈥?1. doi:10.鈥?007/鈥媠10493-012-9529-x CrossRef PubMed
    Sih A (1987) Prey refuges and predator-prey stability. Theor Popul Biol 31:1鈥?2. doi:10.鈥?016/鈥?040-5809(87)90019-0 CrossRef
    Smitley DR, Kennedy GG (1988) Aerial dispersal of the two-spotted spider mite (Tetranychus urticae) from field corn. Exp Appl Acarol 5:33鈥?6. doi:10.鈥?007/鈥婤F02053815 CrossRef
    Strong WB, Slone DH, Croft BA (1999) Hops as a metapopulation landscape for tetranychid phytoseiid interactions: perspectives of intra- and interplant dispersal. Exp Appl Acarol 23:581鈥?97. doi:10.鈥?023/鈥婣:鈥?006208218771 CrossRef
    Uesugi R, Osakabe MH (2007) Isolation and characterization of microsatellite loci in the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Mol Ecol Notes 7:290鈥?92. doi:10.鈥?111/鈥媕.鈥?471-8286.鈥?006.鈥?1583.鈥媥 CrossRef
    Uesugi R, Kunimoto Y, Osakabe M (2009a) The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse. Exp Appl Acarol 47:99鈥?09. doi:10.鈥?007/鈥媠10493-008-9201-7 CrossRef PubMed
    Uesugi R, Sasawaki T, Osakabe M (2009b) Evidence of a high level of gene flow among apple trees in Tetranychus urticae. Exp Appl Acarol 49:281鈥?90. doi:10.鈥?007/鈥媠10493-009-9267-x CrossRef PubMed
    Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. doi:10.鈥?007/鈥?78-0-387-21706-2 CrossRef
    Walzer A, Moder K, Schausberger P (2009) Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators. Bull Entomol Res 99:457鈥?66. doi:10.鈥?017/鈥婼000748530800649鈥? CrossRef PubMed
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358鈥?370. doi:10.鈥?307/鈥?408641 CrossRef
    Weldon PJ, Carroll JF, Kramer M, Bedoukian RH, Coleman RE, Bernier UR (2011) Anointing chemicals and hematophagous arthropods: responses by ticks and mosquitoes to Citrus (Rutaceae) peel exudates and monoterpene components. J Chem Ecol 37:348鈥?59. doi:10.鈥?007/鈥媠10886-011-9922-7 CrossRef PubMed
    Wybouw N, Zhurov V, Martel C, Bruinsma KA, Hendrickx F, Grbi膰 V, van Leeuwen T (2015) Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Mol Ecol. doi:10.鈥?111/鈥媘ec.鈥?3330 PubMed
    Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer. doi:10.鈥?007/鈥?78-0-387-87458-6
  • 作者单位:E. Aguilar-Fenollosa (1)
    J. Rey-Caballero (1) (2)
    J. M. Blasco (1)
    J. G. Segarra-Moragues (3)
    M. A. Hurtado (1)
    J. A. Jaques (1)

    1. Departament de Ci猫ncies Agr脿ries i del Medi Natural, Unitat Associada d鈥橢ntomologia Agr铆cola UJI 鈥?Institut Valenci脿 d鈥橧nvestigacions Agr脿ries (IVIA), Universitat Jaume I (UJI), Campus del Riu Sec, 12071, Castell贸 de la Plana, Spain
    2. Departament d鈥橦ortofruticultura, Bot脿nica i Jardineria (HBJ), Grup de Malherboligia i Ecolog铆a Vegetal, Universitat de Lleida (UdL), Avda Rovira Roure 191, 25198, Lleida, Spain
    3. Departamento de Biolog铆a Vegetal, Facultad de Ciencias Biol贸gicas, Universitat de Val猫ncia, Avda. Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
  • 刊物主题:Entomology; Animal Systematics/Taxonomy/Biogeography; Animal Genetics and Genomics; Animal Ecology; Life Sciences, general;
  • 出版者:Springer Netherlands
  • ISSN:1572-9702
文摘
Dispersal can be an essential factor affecting the biological control of pests. Tetranychus urticae Koch (Acari: Tetranychidae) is a cosmopolitan and polyphagous species that may reach the pest status in many cropping systems including clementine orchards, where it may be found both in the trees and the associated flora. In a previous study, we demonstrated that the use of a ground cover of Festuca arundinacea Schreber (Poaceae) offered a better regulation of T. urticae populations than traditional alternatives (bare soil, multifloral wild cover). Therefore, we decided to study the ambulatory dispersal of mites crawling up and down tree trunks in a clementine mandarin orchard grown in association with a F. arundinacea cover for one season. The highest ambulatory migration rate was upward from the cover to the canopy. Multivariate regressions showed that the dynamics of T. urticae populations in the trees was strongly related to that of Phytoseiidae mites, their main natural predators. Surprisingly, canopy populations were not related to those on the ground cover or to those dispersing from it. When T. urticae individuals collected from the ground cover, the tree trunk, and the canopy were subjected to molecular analyses, the optimal number of genetic clusters (demes) was two. One cluster grouped individuals dispersed from the ground cover (e.g. collected on tree trunks) and 27.5 % of individuals collected in the ground cover. The second cluster grouped all the individuals collected from trees and 72.5 % of those collected in the cover. Interestingly, none of the individuals collected from the tree canopies was grouped with the first deme. This result may be taken as indicative that grass-adapted T. urticae individuals are unable to satisfactorily colonize and establish on the trees and provides evidence that host adaptation can hamper dispersal and establishment of the ground cover deme on trees, contributing to a better natural regulation of this pest species in citrus. Keywords Two spotted spider mite Phytoseiidae Conservation biological control Habitat management Local adaptation Microsatellite markers

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700