用户名: 密码: 验证码:
Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis
详细信息    查看全文
  • 作者:Evan C Osmundson (1) (3)
    Dipankar Ray (4)
    Finola E Moore (1)
    Hiroaki Kiyokawa (1) (2) (3)
  • 刊名:Cell Division
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:4
  • 期:1
  • 全文大小:235KB
  • 参考文献:1. Luo X, Tang Z, Xia G, Wassmann K, Matsumoto T, Rizo J, Yu H: The Mad2 spindle checkpoint protein has two distinct natively folded states. / Nat Struct Mol Biol 2004, 11:338-45. CrossRef
    2. Yu H: Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model. / J Cell Biol 2006, 173:153-57. 200601172">CrossRef
    3. Skinner JJ, Wood S, Shorter J, Englander SW, Black BE: The Mad2 partial unfolding model: regulating mitosis through Mad2 conformational switching. / J Cell Biol 2008, 183:761-68. 200808122">CrossRef
    4. Reddy SK, Rape M, Margansky WA, Kirschner MW: Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. / Nature 2007, 446:921-25. CrossRef
    5. Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, McDonald ER 3rd, Li MZ, Hannon GJ, Sorger PK, / et al.: Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. / Nature 2007, 446:876-81. CrossRef
    6. Nilsson J, Yekezare M, Minshull J, Pines J: The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. / Nat Cell Biol 2008, 10:1411-420. CrossRef
    7. Ge S, Skaar JR, Pagano M: APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. / Cell Cycle 2009, 8:167-71.
    8. Osmundson EC, Ray D, Moore FE, Gao Q, Thomsen GH, Kiyokawa H: The HECT E3 ligase Smurf2 is required for Mad2-dependent spindle assembly checkpoint. / J Cell Biol 2008, 183:267-77. 200801049">CrossRef
    9. Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K, Wrana JL: TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. / Nat Cell Biol 2001, 3:587-95. 2">CrossRef
    10. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. / Mol Cell 2000, 6:1365-375. 2765(00)00134-9">CrossRef
    11. Lin X, Liang M, Feng XH: Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. / J Biol Chem 2000, 275:36818-6822. 200">CrossRef
    12. Schwamborn JC, Muller M, Becker AH, Puschel AW: Ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. / EMBO J 2007, 26:1410-422. CrossRef
    13. Subramaniam V, Li H, Wong M, Kitching R, Attisano L, Wrana J, Zubovits J, Burger AM, Seth A: The RING-H2 protein RNF11 is overexpressed in breast cancer and is a target of Smurf2 E3 ligase. / Br J Cancer 2003, 89:1538-544. CrossRef
    14. Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, Boyce BF, Xing L: Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. / J Biol Chem 2006, 281:4326-333. 200">CrossRef
    15. Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY, Bae SC: Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. / J Biol Chem 2004, 279:29409-9417. 20200">CrossRef
    16. Han G, Li AG, Liang YY, Owens P, He W, Lu S, Yoshimatsu Y, Wang D, Ten Dijke P, Lin X, Wang XJ: Smad7-induced beta-catenin degradation alters epidermal appendage development. / Dev Cell 2006, 11:301-12. 2006.06.014">CrossRef
    17. Fukunaga E, Inoue Y, Komiya S, Horiguchi K, Goto K, Saitoh M, Miyazawa K, Koinuma D, Hanyu A, Imamura T: Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells. / J Biol Chem 2008, 283:35660-5667. 200">CrossRef
    18. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL: Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. / Nat Cell Biol 2003, 5:410-21. CrossRef
    19. Ruchaud S, Carmena M, Earnshaw WC: Chromosomal passengers: conducting cell division. / Nat Rev Mol Cell Biol 2007, 8:798-12. 2257">CrossRef
    20. Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T, Lasorella A, Iavarone A, Chang S, Hernando E, Pagano M: Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. / Nature 2008, 452:365-69. CrossRef
    21. Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, / et al.: Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. / Nature 2004, 430:797-02. 2820">CrossRef
    22. Menssen A, Epanchintsev A, Lodygin D, Rezaei N, Jung P, Verdoodt B, Diebold J, Hermeking H: c-MYC delays prometaphase by direct transactivation of MAD2 and BubR1: identification of mechanisms underlying c-MYC-induced DNA damage and chromosomal instability. / Cell Cycle 2007, 6:339-52.
    23. Wang RH, Yu H, Deng CX: A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. / Proc Natl Acad Sci USA 2004, 101:17108-7113. CrossRef
    24. Wassmann K, Liberal V, Benezra R: Mad2 phosphorylation regulates its association with Mad1 and the APC/C. / EMBO J 2003, 22:797-06. CrossRef
    25. Mapelli M, Massimiliano L, Santaguida S, Musacchio A: The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. / Cell 2007, 131:730-43. 2007.08.049">CrossRef
    26. Mikhailov A, Cole RW, Rieder CL: DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. / Curr Biol 2002, 12:1797-806. 22(02)01226-5">CrossRef
    27. Shannon KB, Canman JC, Salmon ED: Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension. / Mol Biol Cell 2002, 13:3706-719. 2-03-0137">CrossRef
    28. Vong QP, Cao K, Li HY, Iglesias PA, Zheng Y: Chromosome alignment and segregation regulated by ubiquitination of survivin. / Science 2005, 310:1499-504. 26/science.1120160">CrossRef
    29. Mapelli M, Filipp FV, Rancati G, Massimiliano L, Nezi L, Stier G, Hagan RS, Confalonieri S, Piatti S, Sattler M, Musacchio A: Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. / EMBO J 2006, 25:1273-284. CrossRef
    30. Xia G, Luo X, Habu T, Rizo J, Matsumoto T, Yu H: Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. / EMBO J 2004, 23:3133-143. 22">CrossRef
    31. Yang M, Li B, Tomchick DR, Machius M, Rizo J, Yu H, Luo X: p31comet blocks Mad2 activation through structural mimicry. / Cell 2007, 131:744-55. 2007.08.048">CrossRef
    32. Luo X, Yu H: Protein Metamorphosis: The Two-State Behavior of Mad2. / Structure 2008, 16:1616-625. 2008.10.002">CrossRef
    33. Ban KH, Torres JZ, Miller JJ, Mikhailov A, Nachury MV, Tung JJ, Rieder CL, Jackson PK: The END network couples spindle pole assembly to inhibition of the anaphase-promoting complex/cyclosome in early mitosis. / Dev Cell 2007, 13:29-2. 2007.04.017">CrossRef
    34. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL: Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. / Science 2003, 302:1775-779. 26/science.1090772">CrossRef
    35. Glotzer M: The molecular requirements for cytokinesis. / Science 2005, 307:1735-739. 26/science.1096896">CrossRef
    36. Pellman D: Cell biology: aneuploidy and cancer. / Nature 2007, 446:38-9. CrossRef
    37. Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R: MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. / Nature 2001, 409:355-59. CrossRef
    38. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R: Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. / Cancer Cell 2007, 11:9-3. 2006.10.019">CrossRef
    39. Michel L, Benezra R, Diaz-Rodriguez E: MAD2 dependent mitotic checkpoint defects in tumorigenesis and tumor cell death: a double edged sword. / Cell Cycle 2004, 3:990-92.
    40. Jeganathan K, Malureanu L, Baker DJ, Abraham SC, van Deursen JM: Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. / J Cell Biol 2007, 179:255-67. 200706015">CrossRef
    41. Iwanaga Y, Chi YH, Miyazato A, Sheleg S, Haller K, Peloponese JM Jr, Li Y, Ward JM, Benezra R, Jeang KT: Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. / Cancer Res 2007, 67:160-66. 2.CAN-06-3326">CrossRef
    42. Fukuchi M, Fukai Y, Masuda N, Miyazaki T, Nakajima M, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H: High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. / Cancer Res 2002, 62:7162-165.
    43. Jin C, Yang YA, Anver MR, Morris N, Wang X, Zhang YE: Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. / Cancer Res 2009, 69:735-40. 2.CAN-08-1463">CrossRef
  • 作者单位:Evan C Osmundson (1) (3)
    Dipankar Ray (4)
    Finola E Moore (1)
    Hiroaki Kiyokawa (1) (2) (3)

    1. Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL, 60611, USA
    3. Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, 900 S. Ashland Avenue, Chicago, IL, 60607, USA
    4. Division of Cell Biology and Physiology, Indian Institute of Chemical Biology (CSIR Institute), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
    2. Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL, 60611, USA
文摘
The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C) is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2), is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus)-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2), known as a negative regulator of transforming growth factor-beta (TGF-β) signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by perturbed mitotic control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700