Cerebellar contributions to neurological soft signs in healthy young adults
详细信息    查看全文
  • 作者:Dusan Hirjak ; Philipp A. Thomann…
  • 关键词:Cerebellum ; Neurological soft signs ; Regional homogeneity ; Resting ; state fMRI ; SUIT
  • 刊名:European Archives of Psychiatry and Clinical Neuroscience
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:266
  • 期:1
  • 页码:35-41
  • 全文大小:1,081 KB
  • 参考文献:1.Schroder J, Niethammer R, Geider FJ, Reitz C, Binkert M, Jauss M et al (1991) Neurological soft signs in schizophrenia. Schizophr Res 6(1):25–30CrossRef PubMed
    2.Bombin I, Arango C, Buchanan RW (2005) Significance and meaning of neurological signs in schizophrenia: two decades later. Schizophr Bull 31(4):962–977CrossRef PubMed
    3.Chan RC, Gottesman II (2008) Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star? Neurosci Biobehav Rev 32(5):957–971CrossRef PubMed
    4.Hirjak D, Wolf RC, Stieltjes B, Hauser T, Seidl U, Schröder J, Thomann PA (2014) Cortical signature of neurological soft signs in recent onset schizophrenia. Brain Topogr 27(2):296–306. doi:10.​1007/​s10548-013-0292-z CrossRef PubMed
    5.Hirjak D, Wolf RC, Stieltjes B, Seidl U, Schröder J, Thomann PA (2012) Neurological soft signs and subcortical brain morphology in recent onset schizophrenia. J Psychiatr Res 46(4):533–539. doi:10.​1016/​j.​jpsychires.​2012.​01.​015 CrossRef PubMed
    6.Mayoral M, Merchan-Naranjo J, Rapado M, Leiva M, Moreno C, Giraldez M et al (2010) Neurological soft signs in juvenile patients with Asperger syndrome, early onset psychosis, and healthy controls. Early Interv Psychiatry 4(4):283–290CrossRef PubMed
    7.De la Fuente JM, Bobes J, Vizuete C, Bascaran MT, Morlan I, Mendlewicz J (2006) Neurologic soft signs in borderline personality disorder. J Clin Psychiatry 67(4):541–546CrossRef PubMed
    8.Dazzan P, Morgan KD, Chitnis X, Suckling J, Morgan C, Fearon P et al (2006) The structural brain correlates of neurological soft signs in healthy individuals. Cereb Cortex 16(8):1225–1231CrossRef PubMed
    9.Zhao Q, Li Z, Huang J, Yan C, Dazzan P, Pantelis C, et al (2014) Neurological soft signs are not “soft” in brain structure and functional networks: evidence from ale meta-analysis. Schizophr Bull 40(3):626–641. doi:10.​1093/​schbul/​sbt063 PubMedCentral CrossRef PubMed
    10.Hirjak D, Wolf RC, Kubera KM, Stieltjes B, Thomann PA (2014) Multiparametric mapping of neurological soft signs in healthy adults. Brain Struct Funct [Epub ahead of print]
    11.Chan RC, Rao H, Chen EE, Ye B, Zhang C (2006) The neural basis of motor sequencing: an fMRI study of healthy subjects. Neurosci Lett 398(3):189–194CrossRef PubMed
    12.Schroder J, Wenz F, Schad LR, Baudendistel K, Knopp MV (1995) Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. Br J Psychiatry 167(2):197–201CrossRef PubMed
    13.Schroder J, Essig M, Baudendistel K, Jahn T, Gerdsen I, Stockert A et al (1999) Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: a study with functional magnetic resonance imaging. Neuroimage 9(1):81–87CrossRef PubMed
    14.Thomann PA, Hirjak D, Kubera KM, Stieltjes B, Wolf RC (2014) Neural network activity and neurological soft signs in healthy adults. Behav Brain Res 278C:514–519
    15.Hirjak D, Wolf RC, Stieltjes B, Seidl U, Schroder J, Thomann PA (2012) Neurological soft signs and subcortical brain morphology in recent onset schizophrenia. J Psychiatr Res 46(4):533–539CrossRef PubMed
    16.Hirjak D, Wolf RC, Wilder-Smith EP, Kubera KM, Thomann PA (2015) Motor abnormalities and basal ganglia in schizophrenia: evidence from structural magnetic resonance imaging. Brain Topogr 28(1):135–152. doi:10.​1007/​s10548-014-0377-3 CrossRef PubMed
    17.Thomann PA, Roebel M, Dos Santos V, Bachmann S, Essig M, Schroder J (2009) Cerebellar substructures and neurological soft signs in first-episode schizophrenia. Psychiatry Res 173(2):83–87CrossRef PubMed
    18.Hirjak D, Wolf RC, Kubera KM, Stieltjes B, Maier-Hein KH, Thomann PA (2015) Neurological soft signs in recent-onset schizophrenia: Focus on the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry. doi:10.​1016/​j.​pnpbp.​2015.​01.​011 PubMed
    19.Schmahmann JD, Macmore J, Vangel M (2009) Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162(3):852–861PubMedCentral CrossRef PubMed
    20.Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2):489–501CrossRef PubMed
    21.Chan RC, Huang J, Di X (2009) Dexterous movement complexity and cerebellar activation: a meta-analysis. Brain Res Rev 59(2):316–323CrossRef PubMed
    22.Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297PubMedCentral CrossRef PubMed
    23.Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRef PubMed
    24.Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103(26):10046–10051PubMedCentral CrossRef PubMed
    25.Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678PubMedCentral CrossRef PubMed
    26.Bachmann S, Bottmer C, Schroder J (2005) Neurological soft signs in first-episode schizophrenia: a follow-up study. Am J Psychiatry 162(12):2337–2343CrossRef PubMed
    27.Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33(1):127–138CrossRef PubMed
    28.Kuhn S, Romanowski A, Schubert F, Gallinat J (2011) Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct 217(2):523–529CrossRef PubMed
    29.Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851CrossRef PubMed
    30.Kuhn S, Romanowski A, Schilling C, Banaschewski T, Barbot A, Barker GJ et al (2012) Manual dexterity correlating with right lobule VI volume in right-handed 14-year-olds. Neuroimage 59(2):1615–1621CrossRef PubMed
    31.D’Agata F, Caroppo P, Boghi A, Coriasco M, Caglio M, Baudino B et al (2011) Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct 216(3):275–288CrossRef PubMed
    32.Fan L, Tang Y, Sun B, Gong G, Chen ZJ, Lin X et al (2010) Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 1353:60–73CrossRef PubMed
    33.Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400CrossRef PubMed
    34.Zou Q, Wu CW, Stein EA, Zang Y, Yang Y (2009) Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage 48(3):515–524PubMedCentral CrossRef PubMed
    35.Wu T, Long X, Zang Y, Wang L, Hallett M, Li K et al (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30(5):1502–1510CrossRef PubMed
    36.Yao Z, Wang L, Lu Q, Liu H, Teng G (2009) Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. J Affect Disord 115(3):430–438CrossRef PubMed
    37.Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J et al (2010) Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 1321:169–179CrossRef PubMed
    38.Lui S, Li T, Deng W, Jiang L, Wu Q, Tang H et al (2010) Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry 67(8):783–792CrossRef PubMed
    39.Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46(1):39–46CrossRef PubMed
    40.Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154PubMedCentral CrossRef PubMed
    41.Visintin E, De Panfilis C, Antonucci C, Capecci C, Marchesi C, Sambataro F (2014) Parsing the intrinsic networks underlying attention: a resting state study. Behav Brain Res 278C:315–322
    42.Hirjak D, Wolf RC, Koch SC, Mehl L, Kelbel JK, Kubera KM et al (2014) Neurological abnormalities in recent-onset schizophrenia and asperger-syndrome. Front Psychiatry 5:91PubMedCentral CrossRef PubMed
    43.Thomann PA, Wustenberg T, Santos VD, Bachmann S, Essig M, Schroder J (2009) Neurological soft signs and brain morphology in first-episode schizophrenia. Psychol Med 39(3):371–379CrossRef PubMed
    44.Kong L, Bachmann S, Thomann PA, Essig M, Schroder J (2012) Neurological soft signs and gray matter changes: a longitudinal analysis in first-episode schizophrenia. Schizophr Res 134(1):27–32CrossRef PubMed
    45.Bottmer C, Bachmann S, Pantel J, Essig M, Amann M, Schad LR et al (2005) Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia. Psychiatry Res 140(3):239–250CrossRef PubMed
    46.Fan LZ, Tang YC, Sun B, Gong GL, Chen ZJ, Lin XT et al (2010) Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 1353:60–73CrossRef PubMed
    47.Bernard JA, Seidler RD (2013) Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum 12(5):721–737CrossRef PubMed
    48.Bernard JA, Seidler RD (2013) Cerebellar contributions to visuomotor adaptation and motor sequence learning: an ALE meta-analysis. Front Hum Neurosci 7:27PubMedCentral CrossRef PubMed
    49.Stoodley CJ, Valera EM, Schmahmann JD (2010) An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol 23(1–2):65–79PubMedCentral CrossRef PubMed
    50.Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80(3):807–815CrossRef PubMed
    51.Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19(10):2485–2497PubMedCentral CrossRef PubMed
    52.Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13(2):55–73CrossRef PubMed
    53.Bushara KO, Wheat JM, Khan A, Mock BJ, Turski PA, Sorenson J et al (2001) Multiple tactile maps in the human cerebellum. NeuroReport 12(11):2483–2486CrossRef PubMed
    54.Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P (2008) Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg 110(8):763–773CrossRef PubMed
    55.Schmahmann JD (1991) An emerging concept. The cerebellar contribution to higher function. Arch Neurol 48(11):1178–1187CrossRef PubMed
    56.Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4(3):174–198CrossRef PubMed
    57.Wisner KM, Atluri G, Lim KO, Macdonald AW 3rd (2013) Neurometrics of intrinsic connectivity networks at rest using fMRI: retest reliability and cross-validation using a meta-level method. Neuroimage 76:236–251CrossRef PubMed
  • 作者单位:Dusan Hirjak (1)
    Philipp A. Thomann (1)
    Katharina M. Kubera (1)
    Bram Stieltjes (2)
    Robert C. Wolf (1) (3)

    1. Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Voßstraße 4, 69115, Heidelberg, Germany
    2. Department of Radiology, Section Quantitative Imaging Based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany
    3. Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Homburg, Germany
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Psychiatry
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-8491
文摘
Neurological soft signs (NSS) are frequently found in psychiatric disorders of significant neurodevelopmental origin, e.g., in patients with schizophrenia and autism. Yet NSS are also present in healthy individuals suggesting a neurodevelopmental signature of motor function, probably as a continuum between health and disease. So far, little is known about the neural mechanisms underlying these motor phenomena in healthy persons, and it is even less known whether the cerebellum contributes to NSS expression. Thirty-seven healthy young adults (mean age = 23 years) were studied using high-resolution structural magnetic resonance imaging (MRI) and “resting-state” functional MRI at three Tesla. NSS levels were measured using the “Heidelberg Scale.” Cerebellar gray matter volume was investigated using cerebellum-optimized voxel-based analysis methods. Cerebellar function was assessed using regional homogeneity (ReHo), a measure of local network strength. The relationship between cerebellar structure and function and NSS was analyzed using regression models. There was no significant relationship between cerebellar volume and NSS (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). Positive associations with cerebellar lobule VI activity were found for the “motor coordination” and “hard signs” NSS domains. A negative relationship was found between lobule VI activity and “complex motor task” domain (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). The data indicate that in healthy young adults, distinct NSS domains are related to cerebellar activity, specifically with activity of cerebellar subregions with known cortical somatomotor projections. In contrast, cerebellar volume is not predictive of NSS in healthy persons. Keywords Cerebellum Neurological soft signs Regional homogeneity Resting-state fMRI SUIT

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700