Frozen-anomaly transformation for the elliptic rendezvous problem
详细信息    查看全文
  • 作者:Javier Roa ; Jesús Peláez
  • 关键词:Spacecraft formation flying ; Relative motion ; Variational formulation ; Dromo
  • 刊名:Celestial Mechanics & Dynamical Astronomy
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:121
  • 期:1
  • 页码:61-81
  • 全文大小:1,169 KB
  • 参考文献:1. Broucke, R.A.: Solution of the elliptic rendezvous problem with the time as independent variable. J. Guid. Control Dyn. 26, 615-21 (2003). doi:10.2514/2.5089
    2. Carter, T.E.: State transition matrices for terminal rendezvous studies: brief survey and new example. J. Guid. Control Dyn. 21, 148-55 (1998). doi:10.2514/2.4211
    3. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27, 653-58 (1960). doi:10.2514/8.8704
    4. Deprit, A.: Ideal frames for perturbed Keplerian motions. Celest. Mech. 13, 253-63 (1976) CrossRef
    5. Fasano, G., D’Errico, M.: Modeling orbital relative motion to enable formation design from application requirements. Celest. Mech. Dyn. Astron. 105, 113-39 (2009). doi:10.1007/s10569-009-9230-5
    6. Gim, D.W., Alfriend, K.T.: State transition matrix of relative motion for the perturbed noncircular reference orbit. J. Guid. Control Dyn. 26, 956-71 (2003). doi:10.2514/2.6924
    7. Gim, D.W., Alfriend, K.T.: Satellite relative motion using differential equinoctial elements. Celest. Mech. Dyn. Astron 92, 295-36 (2005). doi:10.1007/s10569-004-1799-0
    8. Gurfil, P.: Relative motion between elliptic orbits: generalized boundedness conditions and optimal formationkeeping. J. Guid. Control Dyn. 28, 761-67 (2005) CrossRef
    9. Gurfil, P., Lara, M.: Motion near frozen orbits as a means for mitigating satellite relative drift. Celest. Mech. Dyn. Astron. 116, 213-27 (2013). doi:10.1007/s10569-013-9486-7
    10. Hansen, P.A.: Auseinandersetzung einer zweckmssigen Methode zur Berechnung der absoluten Strungen der kleinen Planeten. Bei S. Hirzel, Leipzig (1857)
    11. Hill, G.W.: Researches in the lunar theory. Am. J. Math. 1, 129-47 (1878) CrossRef
    12. Inalhan, G., Tillerson, M., How., J.P.: Relative dynamics and control of spacecraft formations in eccentric orbits. J. Guid. Control Dyn. 25, 48-9 (2002). doi:10.2514/2.4874
    13. Jiang, F., Li, J., Baoyin, H.: Approximate analysis for relative motion of satellite formation flying in elliptical orbits. Celest. Mech. Dyn. Astron. 98, 31-6 (2007). doi:10.1007/s10569-007-9067-8
    14. Kasdin, N.J., Gurfil, P., Kolemen, E.: Canonical modelling of relative spacecraft motion via epicyclic orbital elements. Celest. Mech. Dyn. Astron. 92, 337-70 (2005). doi:10.1007/s10569-004-6441-7
    15. Kustaanheimo, P.E., Stiefel, E.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine. Angew. Math. 218, 204-19 (1965). doi:10.1515/crll.1965.218.204
    16. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963)
    17. Lee, D., Cochran, J.E., Jo, J.H.: Solutions to the variational equations for relative motion of satellites. J. Guid. Control Dyn. 30, 669-78 (2007). doi:10.2514/1.24373
    18. Martinu?i, V., Gurfil, P.: Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celest. Mech. Dyn. Astron. 111, 387-14 (2011). doi:10.1007/s10569-011-9376-9
    19. Melton, R.G.: Time-explicit representation of relative motion between elliptical orbits. J. Guid. Control Dyn. 23, 604-10 (2000). doi:10.2514/2.4605
    20. Palacios, M., Calvo, C.: Ideal frames and regularization in numerical orbit computation. J. Astronaut. Sci. 44, 63-7 (2003)
    21. Peláez, J., Hedo, J.M., de Andrés, P.R.: A special perturbation method in orbital dynamics. Celest. Mech. Dyn. Astron.
  • 作者单位:Javier Roa (1)
    Jesús Peláez (1)

    1. ETSI Aeronáuticos, Technical University of Madrid (UPM), Pza. Cardenal Cisneros 3, 28040?, Madrid, Spain
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Mathematics
  • 出版者:Springer Netherlands
  • ISSN:1572-9478
文摘
A new solution to relative motion on elliptical orbits is presented, based on a novel transformation from the reference state vector to the relative state vector. The relative orbit is constructed assuming that the anomaly, and not the time, is the invariant element throughout the transformation. This concept arises naturally from the variational form of anomaly-explicit formulations. In particular, this paper explores the capabilities of a formulation developed by?Peláez et al. (Celest Mech Dyn Astron. 97, 131-50, 2007), called Dromo. This formulation exploits the advantages of the ideal reference frames and quaternionic descriptions of the orbital plane. The linear variational form of the equations of motion in Dromo is developed herein, and the resulting transformation matrix is presented. When applied to the reference state vector, this linear transformation provides the relative state vector at any step. The invariance in the anomaly implies a certain time delay in the results. Physical times for leader and follower do not coincide after the transformation. To recover the sense of the solution an additional correction is applied a posteriori to cancel this intrinsic time delay. The performance of the new transformation is compared against previous solutions to the problem through a set of numerical examples. Important error reductions in determining the relative orbit are observed in these tests.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700