Role of water repellency in aggregate stability of cultivated soils under simulated raindrop impact
详细信息    查看全文
  • 作者:Lucia Ko?enková ; Peter Matú?
  • 关键词:aggregate stability ; agricultural soils ; soil aggregates ; water repellency
  • 刊名:Eurasian Soil Science
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:48
  • 期:7
  • 页码:754-758
  • 全文大小:141 KB
  • 参考文献:1.T. V. Alekseeva, Z. Sokolowska, M. Hajnos, A. O. Alekseev, and P. I. Kalinin, “Water stability of aggregates in subtropical and tropical soils (Georgia and China) and its relationships with the mineralogy and chemical properties,-Eurasian Soil Sci. 42(4), 415-25 (2009).View Article
    2.Z. S. Arteméva and L. S. Travnikova, “Transformation of organic matter and clay minerals in cultivated gray forest soils,-Eurasian Soil Sci. 39(1), 84-9 (2006).View Article
    3.Z. Bedrna, J. Hra?ko, and S. Sotáková, Agricultural Soil Science (SVPL, Bratislava, 1968) [in Slovak].
    4.E. Benito and F. Díaz-Fierros, “Effects of cropping on the structural stability of soils rich in organic matter,-Soil Tillage Res. 23, 153-61 (1992).View Article
    5.E. Benito, A. Gómez-Ulla, and F. Díaz-Fierros, “Descripción de un simulador de lluvia para estudios de erodibilidad del suelo y estabilidad de los agregados al agua,-Ann. Edaf. Agrobiol. 45, 115-26 (1986).
    6.R. D. Bond and J. R. Harris, “The influence of the microflora on physical properties of soils. I. Effects associated with filamentous algae and fungi,-Aust. J. Soil Res. 2, 111-22 (1964).View Article
    7.K. Chaney and R. S. Swift, “The influence of organic matter on aggregate stability in some British soils,-J. Soil Sci. 35(2), 223-30 (1984).View Article
    8.K. Chaney and R. S. Swift, “Studies on aggregate stability: 2. The effect of humic substances on the stability of reformed soil aggregates,-J. Soil Sci. 37, 337-43 (1986).View Article
    9.C. Chenu, Y. Le Bissonnais, and D. Arrouays, “Organic matter influence on clay wettability and soil aggregate stability,-Soil Sci. Soc. Am. J. 64, 479-486 (2000).View Article
    10.L. F. DeBano, “Water repellent soils: a worldwide concern in management of soil and vegetation,-Agric. Sci. Rev. 7(2), 11-8 (1969).
    11.L. F. DeBano, L. D. Mann, and D. A. Hamilton, “Translocation of hydrophobic substances into soil by burning organic litter,-Soil Sci. Soc. Am. Proc. 34, 130-33 (1970).View Article
    12.L. W. Dekker and C. J. Ritsema, “How water moves in a water repellent sandy soil: 1. Potential and actual water repellency,-Water Resour. Res. 30, 2507-517 (1994).View Article
    13.R. H. Ellerbrock, H. H. Gerke, J. Bachmann, and M. O. Goebel, “Composition of organic matter fractions for explaining wettability of three forest soils,-Soil Sci. Soc. Am. 69, 57-6 (2005).View Article
    14.E. T. Elliott, “Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils,-Soil Sci. Soc. Am. J. 50, 627-33 (1986).View Article
    15.J. Elustondo, D. A. Angers, M. R. Laverdière, and A. N’dayegamiye, “Influence de la culture de ma?s et de la prairie sur l’agrégation et la matière organique de sept sols de Québec,-Can. J. Soil Sci. 70, 395-03 (1990).View Article
    16.W. W. Emerson, “Physical properties and structure,-in Soil Factors in Crop Production in a Semi-Arid Environment (Queensland, 1977), pp. 78-04.
    17.D. Favis-Mortlock, “Erosion by water,-in Encyclopedia of Soil Science (Kluwer, New York, 2005).
    18.K. Fiala, J. Kobza, L. Mat?kovová, V. Bre?ková, J. Makovníková, G. Baran?íková, et al., Definite Methods of Soil Analyses, Sub-Monitoring System -Soil (Vyskumny Ustav Podoznalectva Ochrany Pody, Bratislava, 1999) [in Slovak].
    19.C. M. M. Franco, P. J. Clarke, M. E. Tate, and J. M. Oades, “Studies on non-wetting sands: II. Hydrophobic properties and chemical characterization of natural water-repellent materials in Australian sands,-J. Hydrol., 231-32 (2000).
    20.C. M. M. Franco, M. E. Tate, and J. M. Oades, “Studies on non-wetting sands: I. The role of intrinsic particulate organic matter in the development of water repellency in non-wetting sands,-Aust. J. Soil Res. 33, 253-63 (1995).View Article
    21.E. Fulajtár and L. Jansky, Water Erosion and Soil Protection (Vyskumny Ustav Podoznalectva Ochrany Pody, Bratislava, 2001).
    22.A. Golchin, P. Clarke, J. M. Oades, and J. O. Skjemstad, “The effects of cultivation on the composition of organic matter and structural stability of soils,-Aust. J. Soil Res. 33, 975-93 (1995).View Article
    23.R. J. Harper, I. McKissock, R. J. Gilkes, D. J. Carter, and P. S. Blackwell, “A multivariate framework for interpreting the effects of soil properties, soil management and land use on water repellency,-J. Hydrol., 231-32; 371-83 (2000).
    24.J. Hra?ko, L. ?ervenka, Z. Facek, J. Komár, J. Něme?ek, et al., Soil analyses (Slovak Agricultural Literature Publishing, Bratislava, 1962) [in Slovak].
    25.W. D. Kemper and E. J. Koch, “Aggregate stability of soils from western United States and Canada,-in USDA-ARS Technical Bulletin (U.S. Governmental Printing Office, Washington DC, 1966), Vol. 1355.
    26.K. Yu. Khan, A. I. Pozdnyakov, and B. K. Son, “Structure and stability of soil aggregates,-Eurasian Soil Sci. 40(4), 409-14 (2007).View Article
    27.K. Yu. Khan, A. I. Pozdnyakov, and B. K. Son, “Fabric of soil aggregates
  • 作者单位:Lucia Ko?enková (1)
    Peter Matú? (1)

    1. Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University, Mlynská dolina G, 84215, Bratislava, Slovak Republic
  • 刊物主题:Geotechnical Engineering & Applied Earth Sciences;
  • 出版者:Springer US
  • ISSN:1556-195X
文摘
Soil aggregate stability (AS) is an important indicator of soil physical quality. For the purpose of this research it was hypothesized that particular properties such as water repellency (WR) influence soil aggregation and AS. Directly after sampling, WR was detected for three soils, after a week of air-drying two of these soils still showed some resistance to penetration by a water drop placed on the surface (WDPT test). The study examines AS of air-dried texturally different aggregates of size 0.25-.5 mm taken from surface layers (5-5 cm depth) of six agriculturally used soils. The procedure involves exposure of soil aggregates to direct impact of water drops. Results showed that soil AS increases in order: cutanic Luvisol (siltic) < haplic Chernozem < calcic mollic Fluvisol < mollic grumic Vertisol (pellic) < mollic Fluvisol (calcaric) < gleyic Fluvisol (eutric). Gradual increase in AS can be explained by the increase in soil organic matter content and its hydrophobic properties. Although WR has been most commonly observed in soils under forests and grass cover, the results confirmed that cultivated soils may also create water-stable aggregates, especially in the case when their organic matter induces WR under particular moisture conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700