Water Repellency of Monument Soil Treated by Tung Oil
详细信息    查看全文
  • 作者:Hu-yuan Zhang ; Shi-bin Zhu ; Min Li…
  • 关键词:Earthen monument ; Water repellency ; Hydraulic conductivity ; Tung oil ; Da Bao’en Temple heritage
  • 刊名:Geotechnical and Geological Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:34
  • 期:1
  • 页码:205-216
  • 全文大小:1,373 KB
  • 参考文献:Adams S, Strain BR, Adams MS (1969) Water-repellent soils and annual plant cover in a desert scrub community of southeastern California. Proc Symp Water Rep Soils 354:289–296
    Bisdom EBA, Dekker LW, Schoute JF (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 56:105–118CrossRef
    Blackmon GH (1943) The tung-oil industry. Bot Rev 9(1):1–40CrossRef
    Blom AV (1949) Elsevier’s polymer series, ‘organic coating in theory and practice, V. Chemical film formation’. Elsevier Science Publisher, New York
    Boynton SS, Daniel DE (1985) Hydraulic conductivity tests on compacted clay. J Geotech Eng 111(4):465–478CrossRef
    Butt HJ, Graf K, Kappl M (2003) Physics and chemistry of interfaces. WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRef
    Cao H, Cao F, Thomas Klasson K (2013) Characterization of reference gene expression in tung tree (Vernicia fordii). Ind Crop Prod 50:248–255CrossRef
    Carter C, House L, Little R (1998) Tung oil: a revival. Rev Agric Econ 20(2):666–673
    Chelazzi D, Poggi G, Jaidar Y et al (2013) Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interf Sci 392:42–49CrossRef
    Cuevas J, Horn R, Seguel O et al (2013) Hydraulic conductivity variation in chilean volcanic soils due to wheeling and management. J Soil Sci Plant Nutr 13(3):756–766
    Dalan RA (1991) Defining archaeological features with electromagnetic surveys at the Cahokia Mounds State Historic Site. Geophysics 56:1280–1287CrossRef
    Dalan RA, Banerjee SK (1998) Solving archaeological problems using techniques of soil magnetism. Geoarchaeology 13:3–36CrossRef
    De Freitas M, Price DG (2008) Engineering geology: principles and practice. Springer, Berlin
    De Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57(3):827–863CrossRef
    Degirmenci N, Baradan B (2005) Chemical resistance of pozzolanic plaster for earthen walls. Constr Build Mater 19:536–542CrossRef
    Doerr SH, Shakesby RA, Walsh RPD (1996) Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in Agueda Basin, Portugal. Catena 27:25–47CrossRef
    Doerr SH, Ferreira AJD, Walsh RPD et al (2003) Soil water repellency as a potential parameter in rainfall-runoff modelling: experimental evidence at point to catchment scales from Portugal. Hydrol Process 17:363–377CrossRef
    Douglas P, Mainwaring KA, Morley CP et al (2007) The kinetics and energetics of transitions between water repellent and wettable soil conditions: a linear free energy analysis of the relationship between WDPT and MED/CST. Hydrol Process 21(17):2248–2254CrossRef
    Elert K, Sebastián E, Valverde I et al (2008) Alkaline treatment of clay minerals from the Alhambra Formation: implications for the conservation of earthen architecture. Appl Clay Sci 39:122–132CrossRef
    Foreman DE, Daniel DE (1986) Permeation of compacted clay with organic chemicals. J Geotech Eng 112(7):669–681CrossRef
    Franzoni E (2014) Rising damp removal from historical masonries: a still open challenge. Constr Build Mater 54:123–136CrossRef
    Fuller CS (1931) Oxidation of solid films of tung oil mechanism of the reaction at elevated temperatures. Ind Eng Chem 23:1458–1462CrossRef
    Giorgi R, Baglioni M, Berti D et al (2010) New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Acc Chem Res 43(6):695–704CrossRef
    Goebel MO, Bachmann J, Woche SK et al (2004) Water potential and aggregate size effects on contact angle and surface energy. Soil Sci Soc Am J 68(2):383–393CrossRef
    Greenfield J (1959) Tung oil. J Am Oil Chem Soc 36(11):565–574CrossRef
    Harper RJ, Gilkes RJ (1994) Soil attributes related to water repellency and the utility of soil survey for predicting its occurrence. Soil Res 32(5):1109–1124CrossRef
    Jeyakumar P, Müller K, Deurer M et al (2014) A novel approach to quantify the impact of soil water repellency on run-off and solute loss. Geoderma 221:121–130CrossRef
    Jordán A, Zavala LM, Mataix-Solera J et al (2013) Soil water repellency: origin, assessment and geomorphological consequences. Catena 108:1–5CrossRef
    Khamehchiyan M, Hossein Charkhabi A, Tajik M (2007) Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Eng Geol 89(3):220–229CrossRef
    King PM (1981) Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Soil Res 19(3):275–285CrossRef
    Kirch PV (1980) Burial structures and societal ranking in Vava’u, Tonga. J Polyn Soc 89:291–308
    Letey J, Osborn J, Pelishek RE (1962) Measurement of liquid–solid contact angles in soil and sand. Soil Sci 93:149–153CrossRef
    Letey J, Carrillo MLK, Pang XP (2000) Approaches to characterize the degree of water repellency. J Hydrol 231:61–65CrossRef
    Li M, Zhang HY (2012) Hydrophobicity and carbonation treatment of earthen monuments in humid weather condition. Sci China Technol Sci 55:2313–2320CrossRef
    Ma’Shum M, Farmer VC (1985) Origin and assessment of water repellency of a sandy South Australian soil. Soil Res 23:623–626CrossRef
    McGhie DA, Posner AM (1981) The effect of plant top material on the water repellence of fired sands and water repellent soils. Crop Pasture Sci 32:609–620CrossRef
    Neithalath N, Sumanasooriya MS, Deo O et al (2010) Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater Charact 61(8):802–813CrossRef
    Oliver A (2008) Conservation of earthen archaeological sites. In: Avrami E, Guillaud H, Hardy M (eds) Terra Literature Review: an overview of research in earthen architecture conservation, 1st edn. The Getty Conservation Institute, Los Angeles, pp 80–96
    Parker SD (1987) Encyclopedia of science and technology. McGraw-Hill, New York
    Rainer L (2008) Deterioration and pathology of earthen architecture. In: Avrami E, Guillaud H, Hardy M (eds) Terra Literature Review: An overview of research in earthen architecture conservation, 1st edn. The Getty Conservation Institute, Los Angeles, pp 45–61
    Roberts FJ, Carbon BA (1971) Water repellence in sandy soils of southwestern Australia: I. Some studies related to field occurrence. Field Stn Rec 10:13–20
    Roy JL, McGill WB (2002) Assessing soil water repellency using the molarity of ethanol droplet (MED) test. Soil Sci 167(2):83–97CrossRef
    Rufino RD, Rodrigues GIB, Campos-Takaki GM et al (2011) Application of a yeast biosurfactant in the removal of heavy metals and hydrophobic contaminant in a soil used as slurry barrier. Appl Environ Soil Sci 2011:1–7CrossRef
    Samadzadeh M, Boura SH, Peikari M et al (2011) Tung oil: an autonomous repairing agent for self-healing epoxy coatings. Prog Org Coat 70(4):383–387CrossRef
    Singh SK, Srivastava RK, John S (2009) Studies on soil contamination due to used motor oil and its remediation. Can Geotech J 46(9):1077–1083CrossRef
    Tang XW, Lin TS, Luo X et al (2007) Strength and geo-environmental properties of clay improved by tung oil and sticky rice juice. Geotech Eng 29:1324–1329 (in Chinese)
    Täumer K, Stoffregen H, Wessolek G (2005) Determination of repellency distribution using soil organic matter and water content. Geoderma 125:107–115CrossRef
    Wang CC, Jones FN (2000) Stability and film properties of tung oil modified soybean alkyd emulsion. J Appl Polym Sci 78:1698–1706CrossRef
    Zhang K, Zhang H, Fang S et al (2014) Textual and experimental studies on the compositions of traditional Chinese organic-inorganic mortars. Archaeometry Suppl. 1:100–115CrossRef
    Zisman WA (1964) Relation of the equilibrium contact angle to liquid and solid constitution. Adv Chem Ser 43:1–51CrossRef
  • 作者单位:Hu-yuan Zhang (1) (2)
    Shi-bin Zhu (2)
    Min Li (3)
    Xue-chao Zhang (2)

    1. Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
    2. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, China
    3. School of Civil Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Hydrogeology
    Terrestrial Pollution
    Waste Management and Waste Technology
    Civil Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-1529
文摘
Earthen monuments exposed at archeological sites are afflicted by a series of diseases, such as shrinkage, cracking, and collapse, related to moisture evaporation or partially soaked in ground water. Water repellency treatment is a promising improvement to the durability of earthen monuments. To understand the hydrophobic mechanism of the soil treated by Tung oil, geotechnical tests, including permeability test and water repellency test, in the laboratory were conducted on clay soil sampled from a site where Da Bao’en Temple was in Nanjing, China. Test results indicate that Tung oil film coated on the soil particles could well decrease the surface tension and free energy, providing waterproofing property without obvious change in esthetic appearance. Laboratory tests indicate that Tung oil treatment decreases the hydraulic conductivity and increases the water repellency of the soil. Water repellent treatment with Tung oil provides a new approach for earthen monument conservation under humid weather condition. Keywords Earthen monument Water repellency Hydraulic conductivity Tung oil Da Bao’en Temple heritage

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700