Precise karyotyping of carrot mitotic chromosomes using multicolour-FISH with repetitive DNA
详细信息    查看全文
  • 作者:A. Nowicka ; E. Grzebelus ; D. Grzebelus
  • 关键词:Daucus carota repetitive elements ; fluorescence in situ hybridization ; miniature inverted ; repeat transposable elements
  • 刊名:Biologia Plantarum
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:60
  • 期:1
  • 页码:25-36
  • 全文大小:3,894 KB
  • 参考文献:Altinkut, A., Kotseruba, V., Kirzhner, V.M., Nevo, E., Raskina, O., Belyayev, A.: Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution. — Chromosome Res. 14: 307–317, 2006.CrossRef PubMed
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSIBLAST; a new generation of protein database search programs. — Nucl. Acids Res. 25: 3389–3402, 1997.PubMedCentral CrossRef PubMed
    Arscott, S.A., Tanumihardjo, S.A.: Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. — Comp. Rev. Food Sci. Safety 9: 223–239, 2010.CrossRef
    Arumuganathan, K., Earle, E.D.: Nuclear DNA content of some important plant species. — Plant mol. biol. Rep. 9: 208–218, 1991.CrossRef
    Boyle, S., Rodesch, M.J., Halvensleben, H.A., Jeddeloh, J.A., Bickmore, W.A.: Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. — Chromosome Res. 19: 901–909, 2011.PubMedCentral CrossRef PubMed
    Cavagnaro, P.F., Chung, S.M., Szklarczyk, M., Grzebelus, D., Senalik, D., Atkins, A.E., Simon, P.W.: Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. — Mol. Genet. Genomics 281: 273–288, 2009.CrossRef PubMed
    Cheng, Z., Dong, F., Langdon, T., Ouyang, S., Buell, R., Gu, M., Blattner, F.R., Jiang, J.: Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. — Plant Cell 14: 1691–1704, 2002.PubMedCentral CrossRef PubMed
    Chomczynski, P., Sacchi, N.: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. — Anal. Biochem. 162: 156–159, 1987.CrossRef PubMed
    Dechyeva, D., Gindullis, F., Schmidt, T.: Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. — Chromosome Res. 11; 3–21, 2003.CrossRef PubMed
    Dydak, M., Kolano, B., Nowak, T., Siwinska, D,. Maluszynska, J.: Cytogenetic studies of three European species of Centaurea L. (Asteraceae). — Hereditas 146: 152–161, 2009.CrossRef PubMed
    Essad, S.: [Banding and biometry applied to karyotype analysis in Daucus carota L.] — Agronomie 5: 871–876, 1985. [In French]CrossRef
    Feschotte, C., Swamy, L., Wessler, S.R.: Genome-wide analysis of Mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). — Genetics 163: 747–758, 2003.PubMedCentral PubMed
    Findley, S.D., Cannon, S., Varala, K., Du, J., Ma, J., Hudson, M.E., Birchler, J.A., Stacey, G.: A fluorescence in situ hybridization system for karyotyping soybean. — Genetics 185: 727–744, 2010.PubMedCentral CrossRef PubMed
    Fuchs, J., Brandes, A., Schubert, I.: Telomere sequence localization and karyotype evolution in higher plants. — Plant Syst. Evol. 196: 227–241, 1995.CrossRef
    Gerlach, W.L., Bedbrook, J.R.: Cloning and characterization of ribosomal RNA genes from wheat and barley. — Nucl. Acids Res. 109: 1346–1352, 1979.
    Gerlach, W.L., Dyer, T.A.: Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. — Nucl. Acids Res. 8: 4851–4865, 1980.PubMedCentral CrossRef PubMed
    Grabowska-Joachimiak, A., Kula, A., Gernand-Kliefoth, D., Joachimiak, A.J.: Karyotype structure and chromosome fragility in the grass Phleum echinatum Host. — Protoplasma 252: 301–306, 2015.PubMedCentral CrossRef PubMed
    Grzebelus, D., Jagosz, B., Simon, P.W.: The DcMaster transposon display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. — Gene 390: 67–74, 2007.CrossRef PubMed
    Grzebelus, D., Simon, P.W.: Diversity of DcMaster-like elements of the PIF/Harbinger superfamily in the carrot genome. — Genetica 135: 347–353, 2009.CrossRef PubMed
    Grzebelus, D., Yau, Y.-Y., Simon, P.W.: Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Mol. Genet. Genomics 275: 450–459, 2006.CrossRef PubMed
    Hajdera, I., Siwinska, D,. Hasterok, R., Maluszynska, J.; Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. — Theor. appl. Genet. 107: 988–996, 2003.CrossRef PubMed
    Hasterok, R., Jenkins, G., Langdon, T., Jones, R.N., Maluszynska, J.: Ribosomal DNA is an effective marker of Brassica chromosomes. — Theor. appl. Genet. 103: 486–490, 2001.CrossRef
    Hasterok, R., Langdon, T., Taylor, S., Jenkins, G.; Combinatorial labelling of DNA probes enables multicolour fluorescence in situ hybridisation in plants. — Folia histochem. cytobiol. 40: 319–332, 2002.PubMed
    Heslop-Harrison, J.S.: Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. — Plant Cell 12: 617–635, 2000.PubMedCentral CrossRef PubMed
    Heslop-Harrison, J.S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A.V., Alkhimova, E.G., Kamm, A., Doudrick, R.L., Schwarzacher, T., Katsiotis, A., Kubis, S., Kumar, A., Pearce, S.R., Flavell, A.J., Harrison, G.E.: The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. — Genetica 100: 197–204, 1997.CrossRef PubMed
    Hizume, M., Shibata, F., Matsusaki, Y., Garajova, Z.; Chromosome identification and comparative karyotypic analyses of four Pinus species. — Theor. appl. Genet. 105; 491–497, 2002.CrossRef PubMed
    Horakova, M., Fajkus, J.: TAS49 - a dispersed repetitive sequence isolated from subtelomeric regions of Nicotiana tomentosiformis chromosomes. — Genome 43: 273–284, 2000.PubMed
    Hoshi, Y., Yagi, K., Matsuda, M., Matoba, H., Tagashira, N., Plader, W., Malepszy, S., Nagano, K., Morikawa, A.: A comparative study of the three cucumber cultivars using fluorescent staining and fluorescence in situ hybridization. — Cytologia 76: 3–10, 2011.CrossRef
    Hueros, G., Loarce, Y., Ferrer, E.: A structural and evolutionary analysis of a dispersed repetitive sequence. — Plant mol. Biol. 22: 635–643, 1993.CrossRef PubMed
    Idziak, D., Hazuka, I., Poliwczak, B., Wiszynska, A., Wolny, E., Hasterok, R.: Insight into the karyotype evolution of Brachypodium species using comparative chromosome barcoding. — PLoS ONE 9: e93503, 2014.PubMedCentral CrossRef PubMed
    Iovene, M., Grzebelus, E., Carputo, D., Jiang, J., Simon, P.W.; Major cytogenetic landmarks and karyotype analysis in Daucus carota and other Apiaceae. — Amer. J. Bot. 95: 793–804, 2008.CrossRef
    Iovene, M., Cavagnaro, P.F., Senalik, D., Buell, C.R., Jiang, J., Simon, P.W.: Comparative FISH mapping of Daucus species (Apiaceae family). — Chromosome Res. 19: 493–506, 2011.CrossRef PubMed
    Itoh, Y., Hasebe, M., Davies, E., Takeda, J., Ozeki, Y.: Survival of Tdc transposable elements of the En/Spm superfamily in the carrot genome. — Mol. Genet. Genomics 269: 49–59, 2003.PubMed
    Jiang, N., Feschotte, C., Zhang, X., Wessler, S.R.: Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). — Curr. Opin. Plant Biol. 7: 115–119, 2004.CrossRef PubMed
    Jin, W., Melob, J.R., Nagaki, K., Talbert, P.B., Henikoff, S., Kelly, D.R., Jiang, J.: Maize centromeres: organization and functional adaptation in the genetic background of oat. —Plant Cell 16: 571–581, 2004.PubMedCentral CrossRef PubMed
    Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J.: Repbase update, a database of eukaryotic repetitive elements. — Cytogenet. Genome Res. 110: 462–467, 2005.CrossRef PubMed
    Kato, A., Lamb, J.C., Birchler, J.A.: Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. — Proc. nat. Acad. Sci. USA 101: 13554–13559, 2004.PubMedCentral CrossRef PubMed
    Kiefer-Meyer, M.C., Reddy, A.S., Delseny, M.: Complex arrangement of dispersed repeated DNA sequences in Oryza officinalis. — Genome 39: 183–190, 1996.CrossRef PubMed
    Kolano, B., Plucienniczak, A., Kwasniewski, M., Maluszynska, J.: Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome. — J. appl. Genet. 49; 313–320, 2008.CrossRef PubMed
    Kolano, B., Gardunia, B.W., Michalska, M., Bonifacio, A., Fairbanks, D., Maughan, P.J., Coleman, C.E., Stevens, M.R., Jellen, E.N., Maluszynska, J.: Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. — Genome 54: 710–717, 2011.CrossRef PubMed
    Kubis, S., Schmidt, T., Seymour, J., Heslop-Harrison, J.S.; Repetitive DNA elements as a major component of plant genomes. — Ann. Bot. 82: 45–55, 1998.CrossRef
    Kulikova, O., Gualtieri, G., Guerts, R., Kim, D.J., Cook, D.; Integration of the FISH pachytene and genetic maps of Medicago truncatula. — Plant J. 27: 49–58, 2001.CrossRef PubMed
    Kulikova, O., Geurts, R., Lamine, M., Kim, D.J., Cook, D.R., Leunissen, J., De Jong, H., Roe, B.A., Bisseling, T.; Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. — Chromosoma 113: 276–283, 2004.CrossRef PubMed
    Kumar, P., Widholm, J.M.: Techniques for chromosome analysis of carrot culture cells. — Plant mol. biol. Rep. 2: 37–42, 1984.CrossRef
    Kumar, A., Bennetzen, J.L.: Plant retrotransposons. — Annu. Rev. Genet. 33: 479–532, 1999.CrossRef PubMed
    Levan, A., Fredga, K., Sandberg, A.A.: Nomenclature for centromeric position on chromosomes. — Hereditas 52: 201–220, 1964.CrossRef
    Macko-Podgorni, A., Nowicka, A., Grzebelus, E., Simon, P.W., Grzebelus, D.: DcSto: carrot Stowaway-like elements are abundant, diverse, and polymorphic. — Genetica 141: 255–267, 2013.PubMedCentral CrossRef PubMed
    Menzel, G., Dechyeva, D., Keller, H., Lange, C., Himmelbauer, H., Schmidt, T.: Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L. — Chromosome Res. 14: 831–844, 2006.CrossRef PubMed
    Menzel, G., Dechyeva, D., Wenke, T., Holtgraewe, D., Weisshaar, B., Schmidt, T.: Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). — Ann. Bot. 102: 521–530, 2008.PubMedCentral CrossRef PubMed
    Navratilova, A., Neumann, P., Macas, J.: Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. — Ann. Bot. 91: 921–926, 2003.PubMedCentral CrossRef PubMed
    Neumann, P., Nouzova, M., Macas, J.: Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). — Genome 44: 716–728, 2001.CrossRef PubMed
    Nowicka, A., Grzebelus, E., Grzebelus, D.: Fluorescent in situ hybridization with arbitrarily amplified DNA fragments differentiates carrot (Daucus carota L.) chromosomes. —Genome 55: 205–213, 2012.CrossRef PubMed
    Ozeki, Y., Davies, E., Takeda, J.: Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene. — Mol. gen. Genet. 254: 407–416, 1997.CrossRef PubMed
    Paesold, S., Borchardt, D., Schmidt, T., Dechyeva, D.: A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution. — Plant J. 72: 600–611, 2012.CrossRef PubMed
    Rozen, S., Skaletsky, H.J.: Primer3 on the www for general users and for biologist programmers. — In: Krawetz, S., Misener, S. (ed.): Bioinformatics Methods and Protocols; Methods in Molecular Biology. Pp. 365–386. Humana Press, Totowa 2000.
    Schmidt, T., Kubis, S., Katsiotis, A., Jung, C., Heslop-Harrison, J.S.: Molecular and chromosomal organization of two repetitive DNA sequences with intercalary locations in sugar beet and other Beta species. — Theor. appl. Genet. 97; 696–704, 1998.CrossRef
    Schrader, O., Ahne, R., Fuchs, J.: Karyotype analysis of Daucus carota L. using Giemsa C-Banding and FISH of 5S and 18S/25S rRNA specific genes. — Caryologia 56: 149–154, 2003.CrossRef
    Schwarzacher, T.: DNA, chromosomes, and in situ hybridization. — Genome 46: 953–962, 2003.CrossRef PubMed
    Stebbins, G.L.: Chromosomal Evolution in Higher Plants. — Edward Arnold Publishers, London 1971.
    Szinay, D., Chang, S.B., Khrustaleva, L., Peters, S., Schijlen, E., Bai, Y., Stiekema, W.J., Van Ham, R., De Jong, H., Klein Lankhorst, R.: High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. — Plant J. 56: 627–637, 2008.CrossRef PubMed
    Turcotte, K., Srinivasan, S., Bureau, T.E.: Survey of transposable elements from rice genomic sequences. — Plant J. 25: 169–179, 2001.CrossRef PubMed
    Weber, B., Wenke, T., Frommel, U., Schmidt, T., Heitkam, T.; The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abudance, chromosomal distribution, and age. — Chromosome Res. 18: 247–263, 2010.CrossRef PubMed
    Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., San Miguel, P., Schulman, A.H.: A unified classification system for eukaryotic transposable elements. — Nat. Rev. Genet. 8: 973–982, 2007.CrossRef PubMed
    Wolny, E., Fidyk, W., Hasterok, R.: Karyotyping of Brachypodium pinnatum (2n = 18) chromosomes using cross-species BAC-FISH. — Genome 56: 239–243, 2013.CrossRef PubMed
    Yu, W., Lamb, J.C., Han, F., Birchler, J.A.: Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. — Genetics 175: 31–39, 2007.PubMedCentral CrossRef PubMed
  • 作者单位:A. Nowicka (1)
    E. Grzebelus (2)
    D. Grzebelus (2)

    1. Department of Cell Biology, Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, PL-30239, Krakow, Poland
    2. Department of Genetics, Plant Breeding and Seed Science, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, PL-31425, Krakow, Poland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1573-8264
文摘
Carrot (Daucus carota L.) chromosomes are small and uniform in shape and length. Here, mitotic chromosomes were subjected to multicolour fluorescence in situ hybridization (mFISH) with probes derived from conserved plant repetitive DNA (18-25S and 5S rDNA, telomeres), a carrot-specific centromeric repeat (Cent-Dc), carrot-specific repetitive elements (DCREs), and miniature inverted-repeat transposable elements (MITEs). A set of major chromosomal landmarks comprising rDNA and telomeric and centromeric sequences in combination with chromosomal measurements enabled discrimination of carrot chromosomes. In addition, reproducible and unique FISH patterns generated by three carrot genome-specific repeats (DCRE22, DCRE16, and DCRE9) and two transposon families (DcSto and Krak) in combination with telomeric and centromeric reference probes allowed identification of chromosome pairs and construction of detailed carrot karyotypes. Hybridization patterns for DCREs were observed as pericentromeric and interstitial dotted tracks (DCRE22), signals in pericentromeric regions (DCRE16), or scattered signals (DCRE9) along chromosomes similar to those observed for both MITE families. Additional key words Daucus carota repetitive elements fluorescence in situ hybridization miniature inverted-repeat transposable elements

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700