Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity
详细信息    查看全文
  • 作者:Hongyan Sun ; Xia Guo ; Wei Ye ; Shufang Kou ; Jian Yang
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:9
  • 期:4
  • 页码:1173-1181
  • 全文大小:4,173 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
  • 卷排序:9
文摘
Galvanic replacement, one of the popular strategies for producing hollow metallic nanostructures, has enjoyed great success in the past. However, it is rarely used with Au nanoparticles as the self-sacrificed templates, even though these nanoparticles can be produced with well-controlled size, shape, and structure. Here, both Ag and Au from the core–shell Au@Ag nanorods are demonstrated to be involved in the galvanic replacement for producing hollow nanostructures. The enhanced oxidation of metallic Au could be attributed to the close contact between Au and Ag and the unique charge compensation from Au to Ag, both of which are indispensable for the etching of Au via galvanic replacement. As a result of this reaction, these bimetallic nanorods experience a structural evolution from nanorattles, to tip-empty nanorods, and eventually to porous nanotubes. The nanotubes exhibit high catalytic activities in the electrooxidation of formic acid. These results not only disclose the underlying mechanism by which metallic Au could be replaced under mild conditions, but also expand the selection of self-sacrificed templates for galvanic replacement, which is an important reaction in many applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700