High-resolution finite element methods for 3D simulation of compositionally triggered instabilities in porous media
详细信息    查看全文
  • 作者:Ebrahim Shahraeeni ; Joachim Moortgat ; Abbas Firoozabadi
  • 关键词:Gravitational fingering ; Mixed hybrid finite element methods ; Multiphase and multicomponent flow ; 3D simulation ; Compositional modeling ; 76T30 ; 76S05 ; 65M60 (from 1)
  • 刊名:Computational Geosciences
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:19
  • 期:4
  • 页码:899-920
  • 全文大小:4,429 KB
  • 参考文献:1.Homsy, G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271鈥?11 (1987). doi:10.鈥?146/鈥媋nnurev.鈥媐luid.鈥?9.鈥?.鈥?71 CrossRef
    2.DeWit, A., Homsy, G.M.: Viscous fingering in periodically heterogeneous porous media.1. Formulation and linear instability. J. Chem. Phys. 107(22), 9609鈥?618 (1997). doi:10.鈥?063/鈥?.鈥?75258 CrossRef
    3.DeWit, A., Homsy, G.M.: Viscous fingering in periodically heterogeneous porous media.2. Numerical simulations. J. Chem. Phys. 107(22), 9619鈥?628 (1997). doi:10.鈥?063/鈥?.鈥?75259 CrossRef
    4.Manickam, O., Homsy, G.M.: Simulation of viscous Fingering in miscible displacement with monotonic viscosity profiles. Phys. Fluids 6(1), 95鈥?07 (1994). doi:10.鈥?063/鈥?.鈥?68049 CrossRef
    5.Zimmerman, W.B., Homsy, G.M.: 3-Dimensional viscous fingering - a numerical study. Phys. Fluids A: Fluid Dyn. 4(9), 1901鈥?914 (1992). doi:10.鈥?063/鈥?.鈥?58361 CrossRef
    6.Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81(3), 1131鈥?198 (2009). doi:10.鈥?103/鈥婻evModPhys.鈥?1.鈥?131 CrossRef
    7.Heussler, F.H.C., Oliveira, R.M., John, M.O., Meiburg, E.: Three-dimensional Navier-Stokes simulations of buoyant, vertical miscible Hele-Shaw displacements. J. Fluid Mech. 752, 157鈥?83 (2014). doi:10.鈥?017/鈥媕fm.鈥?014.鈥?27 CrossRef
    8.Nittmann, J., Daccord, G., Stanley, H.E.: Fractal growth of viscous fingers - quantitative characterization of a fluid instability phenomenon. Nature 314(6007), 141鈥?44 (1985). doi:10.鈥?038/鈥?14141a0 CrossRef
    9.Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931鈥?80 (1997). doi:10.鈥?103/鈥婻evModPhys.鈥?9.鈥?31 CrossRef
    10.Pau, G.S., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K.: High resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33, 443鈥?55 (2010)CrossRef
    11.Thompson, A.B., Juel, A., Hazel, A.L.: Multiple finger propagation modes in Hele-Shaw channels of variable depth. J. Fluid Mech. 746, 123鈥?64 (2014). doi:10.鈥?017/鈥媕fm.鈥?014.鈥?00 CrossRef
    12.Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y.Q., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Beni, A.N., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.L.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13 (4), 409鈥?34 (2009). doi:10.鈥?007/鈥媠10596-009-9146-x CrossRef
    13.Gerritsen, M.G., Durlofsky, L.J.: Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid Mech. 37, 211鈥?38 (2005). doi:10.鈥?146/鈥媋nnurev.鈥媐luid.鈥?7.鈥?61903.鈥?75748 CrossRef
    14.Coats, K.H.: A note on IMPES and some IMPES-based simulation models. SPE J. 5(3), 245鈥?51 (2000)CrossRef
    15.Thomas, G.W., Thurnau, D.H.: Reservoir simulation using adaptive implicit method. SPE J. 23, 759鈥?68 (1983)CrossRef
    16.CMG: GEM (generalized equation-of-state model compositional reservoir simulator) user guide (2012)
    17.Schlumberger: Eclipse technical description. In (2007)
    18.Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., M眉thing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMuX: Dune for multi-{phase, component, scale, physics,...} flow and transport in porous media. Adv. Water Resour. 34(9), 1102鈥?112 (2011). doi:10.鈥?016/鈥媕.鈥媋dvwatres.鈥?011.鈥?3.鈥?07 CrossRef
    19.Robinson, B.A., Viswanathan, H.S., Valocchi, A.J.: Efficient numerical techniques for modeling multicomponent ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components. Adv. Water Resour. 23(4), 307鈥?24 (2000). doi:10.鈥?016/鈥媠0309-1708(99)00034-2 CrossRef
    20.Cao, H.: Development of techniques for general purpose simulators. PhD, Stanford University (2002)
    21.Jiang, Y.: Techniques for modeling complex reservoirs and advanced wells. PhD, Stanford University (2007)
    22.Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal. 32, 404鈥?24 (1995)CrossRef
    23.Okuno, R., Johns, R.T., Sepehrnoori, K.: Three-phase flash in compositional simulation using a reduced method. SPE J. 15(3), 1鈥?5 (2010)CrossRef
    24.Wang, W., Kosakowski, G., Kolditz, O.: A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput. Geosci. 35(8), 1631鈥?641 (2009). doi:10.鈥?016/鈥媕.鈥媍ageo.鈥?008.鈥?7.鈥?07 CrossRef
    25.Wheeler, J., Wheeler, M.: Integrated parallel and accurate reservoir simulator. In. University of Texas at Austin (2001)
    26.Pruess, K.: The TOUGH codes鈥攁 family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J. 3(3), 738鈥?46 (2004). doi:10.鈥?113/鈥?.鈥?.鈥?38
    27.Zidane, A., Firoozabadi, A.: An efficient numerical model for multicomponent compressible flow in fractured porous media. Adv. Water Resour. 74, 127鈥?47 (2014)CrossRef
    28.Jackson, M., Gomes, J., Mostaghimi, P., Percival, J., Tollit, B., Pavlidis, D., Pain, C., El-Sheikh, A., Muggeridge, A., Blunt, M.: Reservoir modeling for flow simulation using surfaces, adaptive unstructured meshes and control-volume-finite-element methods. Paper presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA
    29.Jackson, M., Hampson, G., El-Sheikh, A., Saunders, J., Graham, G., Massart, B.: Surface-based reservoir modelling for flow simulation. Geol. Soc. Lond. Spec. Publ., 387 (2013)
    30.Blunt, M., Rubin, B.: Implicit flux limiting schemes for petroleum reservoir simulation. J. Comput. Phys. 102(1), 194鈥?09 (1992)CrossRef
    31.Liu, J., Delshad, M., Pope, G.A., Sepehrnoori, K.: Application of higher order flux-limited methods in compositional simulation. J. Transport Porous Media 16(1-29) (1994)
    32.Todd, M.R., O鈥橠ell, P.M., Hirasaki, G.J.: Methods for increased accuracy in numerical reservoir simulators. Soc. Pet. Eng. J. 12, 515鈥?29 (1972)CrossRef
    33.Mikyska, J., Firoozabadi, A.: Implementation of higher-order methods for robust and efficient compositional simulation. J. Comput. Phys. 229, 2898鈥?913 (2010). doi:10.鈥?016/鈥媕.鈥媕cp.鈥?009.鈥?2.鈥?22 CrossRef
    34.Coats, K.H.: An equation of state compositional model. SPE J. 20(5), 363鈥?76 (1980). doi:10.鈥?118/鈥?284-PA CrossRef
    35.Ewing, R.E., Heinemann, R.F.: Incorporation of mixed finite element methods in compositional simulation for reduction of numerical dispersion. Paper presented at the SPE Reservoir Simulation Symposium, San Francisco, CA, USA, 15-18 November 1983
    36.Scovazzi, G., Gerstenberger, A., Collis, S.S.: A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media. J. Comput. Phys. 233, 373鈥?99 (2013). doi:10.鈥?016/鈥媕.鈥媕cp.鈥?012.鈥?9.鈥?03 CrossRef
    37.Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548(87鈥?11) (2006)
    38.Myint, P.C., Firoozabadi, A.: Onset of convection with fluid compressibility and interface movement. Phys. Fluids 25, 094105 (2013)CrossRef
    39.Myint, P.C., Firoozabadi, A.: Onset of buoyancy-driven convection in Cartesian and cylindrical geometries. Phys. Fluids 25, 044105 (2013)CrossRef
    40.Moortgat, J., Li, Z., Firoozabadi, A.: Three-phase compositional modeling of CO 2 injection by higher-order finite element methods with CPA equation of state for aqueous phase. Water Resour. Res. 48, W12511 (2012). doi:10.鈥?029/鈥?011WR011736
    41.Moortgat, J., Firoozabadi, A.: Fickian diffusion in discrete-fractured media from chemical potential gradients and comparison to experiment. Energy Fuel 27(10), 5793鈥?805 (2013). doi:10.鈥?021/鈥媏f401141q CrossRef
    42.Leahy-Dios, A., Firoozabadi, A.: Unified model for nonideal multicomponent molecular diffusion coefficients. AlChE J. 53(11), 2932鈥?939 (2007)CrossRef
    43.Darlow, B.L., Ewing, R.E., Wheeler, M.: Mixed finite element methods for miscible displacement in porous media. Paper presented at the 6th SPE Reservoir Simulation Symposium, New Orlean, LA, USA
    44.Hoteit, H., Firoozabadi, A.: Simple phase stability-testing algorithm in the reduction method. Aiche J. 52 (8), 2909鈥?920 (2006). doi:10.鈥?002/鈥媋ic.鈥?0908 CrossRef
    45.Acs, G., Doleschall, E., Farkas, E.: General purpose compositional model. SPE J. 25(4), 543鈥?53 (1985). doi:SPE-10515-PA CrossRef
    46.Moortgat, J., Sun, S., Firoozabadi, A.: Compositional modeling of three-phase flow with gravity using higher-order finite element methods. Water Resour. Res. 47, W05511 (2011). doi:10.鈥?029/鈥?010WR009801
    47.Li, Z., Firoozabadi, A.: General strategy for stability testing and phase-split calculation in two and three phases. SPE J. 17(4), 1096鈥?107 (2012). doi:SPE-129844-PP CrossRef
    48.Robinson, Peng, D.-Y.: The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs. Gpa Research Report / Rr : 28. Gas Processors Association, Tulsa, Okla (1978)
    49.Li, Z., Firoozabadi, A.: Cubic-Plus-Association (Cpa) Equation of state for water-containing mixtures: is 鈥檆ross association鈥?necessary? AIChE J. 55(7), 1803鈥?813 (2009)CrossRef
    50.Stone, H.: Probability model for estimating three-phase relative permeability. J. Petrol. Technol. 214, 214鈥?18 (1970)CrossRef
    51.Stone, H.: Estimation of three-phase relative permeability and residual oil data. J. Can. Petrol. Technol. 12, 53鈥?1 (1973)
    52.Hoteit, H., Firoozabadi, A.: Compositional modeling by the combined discontinuous Galerkin and mixed methods. SPE J. 11(1), 19鈥?4 (2006). doi:10.鈥?118/鈥?0276-PA CrossRef
    53.Hoteit, H., Ackerer, P., Mose, R., Erhel, J., Philippe, B.: New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. International Journal for Numerical Methods in Engineering 61(14), 2566鈥?593 (2004). doi:10.鈥?002/鈥媙me.鈥?172 CrossRef
    54.Birkhoff, G., Rota, G.-C.: Ordinary differential equations, 6th edn. Wiley, New York (1989)
    55.Hoteit, H., Firoozabadi, A.: An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 31(6), 891鈥?05 (2008). doi:10.鈥?016/鈥媕.鈥媋dvwatres.鈥?008.鈥?2.鈥?04 CrossRef
    56.Moortgat, J., Firoozabadi, A., Li, Z., Esposito, R.: CO2 injection in vertical and horizontal cores: measurements and numerical simulation. SPE J. 18(2), 331鈥?44 (2013)CrossRef
    57.Moortgat, J., Firoozabadi, A.: Three-phase compositional modeling with capillarity in heterogeneous and fractured media. SPE J. (2013)
    58.Moortgat, J., Firoozabadi, A.: Higher-order compositional modeling of three-phase flow in 3d fractured porous media based on cross-flow equilibrium. J. Comput. Phys. 250, 425鈥?45 (2013). doi:10.鈥?016/鈥媕.鈥媕cp.鈥?013.鈥?5.鈥?09 CrossRef
    59.Ahmed, T., Nasrabadi, H., Firoozabadi, A.: Complex flow and composition path in CO 2 injection schemes from density effects. Energy Fuel 26, 4590鈥?598 (2012). doi:10.鈥?021/鈥媏f300502f CrossRef
  • 作者单位:Ebrahim Shahraeeni (1)
    Joachim Moortgat (2)
    Abbas Firoozabadi (1) (3)

    1. Reservoir Engineering Research Institute (RERI), Palo Alto, CA, 94301, USA
    2. School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
    3. Yale School of Engineering and Applied Science, New Haven, CT, 06511, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Modeling and IndustrialMathematics
    Geotechnical Engineering
    Hydrogeology
    Soil Science and Conservation
  • 出版者:Springer Netherlands
  • ISSN:1573-1499
文摘
The formation and development of patterns in the unstable interface between an injected fluid and hydrocarbons or saline aqueous phase in a porous medium can be driven by viscous effects and gravity. Numerical simulation of the so-called fingering is a challenge, which requires rigorous representation of the fluid flow and thermodynamics as well as highresolution discretization in order to minimize numerical artifacts. To achieve such a high resolution, we present higherorder 3D finite element methods for the simulation of fully compositional, three-phase and multi-component flow. This is based on a combination of the mixed hybrid finite element (MHFE) method for total fluid velocity and discontinuous Galerkin (DG) method for the species transport. The phase behavior is described by cubic or cubic-plus-association (CPA) equations of state. We present challenging numerical examples of compositionally triggered fingering at both the core and the large scale. Four additional test cases illustrate the robustness and efficiency of the proposed methods, which demonstrate their power for problems of this complexity. Results reveal three orders of magnitude improvement in CPU time in our method compared with the lowest-order finite difference method for some of the examples. Comparison between 3D and 2D results highlights the significance of dimensionality in the flow simulation. Keywords Gravitational fingering Mixed hybrid finite element methods Multiphase and multicomponent flow 3D simulation Compositional modeling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700