Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria
详细信息    查看全文
  • 作者:Katarzyna Kinga Modrzynska (1) (8)
    Alison Creasey (1)
    Laurence Loewe (2)
    Timothee Cezard (3)
    Sofia Trindade Borges (4) (9)
    Axel Martinelli (5)
    Louise Rodrigues (10) (5)
    Pedro Cravo (11) (5)
    Mark Blaxter (3) (6)
    Richard Carter (1)
    Paul Hunt (1) (7)
  • 刊名:BMC Genomics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:13
  • 期:1
  • 全文大小:699KB
  • 参考文献:1. Wellems TE, Walker-Jonah A, Panton LJ: Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. / Proc Natl Acad Sci USA 1991,88(8):3382鈥?386. CrossRef
    2. Su X, Kirkman LA, Fujioka H, Wellems TE: Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. / Cell 1997,91(5):593鈥?03. CrossRef
    3. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, / et al.: Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. / Mol Cell 2000,6(4):861鈥?71. CrossRef
    4. Durand R, Jafari S, Vauzelle J, Delabre JF, Jesic Z, Le Bras J: Analysis of pfcrt point mutations and chloroquine susceptibility in isolates of Plasmodium falciparum. / Mol Biochem Parasitol 2001,114(1):95鈥?02. CrossRef
    5. Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, / et al.: A molecular marker for chloroquine-resistant falciparum malaria. / N Engl J Med 2001,344(4):257鈥?63. CrossRef
    6. Sanchez CP, McLean JE, Stein W, Lanzer M: Evidence for a substrate specific and inhibitable drug efflux system in chloroquine resistant Plasmodium falciparum strains. / Biochemistry 2004,43(51):16365鈥?6373. CrossRef
    7. Bray PG, Mungthin M, Hastings IM, Biagini GA, Saidu DK, Lakshmanan V, Johnson DJ, Hughes RH, Stocks PA, O'Neill PM, / et al.: PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX. / Mol Microbiol 2006,62(1):238鈥?51. CrossRef
    8. Martin RE, Marchetti RV, Cowan AI, Howitt SM, Broer S, Kirk K: Chloroquine transport via the malaria parasite's chloroquine resistance transporter. / Science 2009,325(5948):1680鈥?682. CrossRef
    9. Fitch CD: Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. / Life Sci 2004,74(16):1957鈥?972. CrossRef
    10. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF: Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. / Nature 2000,403(6772):906鈥?09. CrossRef
    11. Sidhu AB, Valderramos SG, Fidock DA: pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. / Mol Microbiol 2005,57(4):913鈥?26. CrossRef
    12. Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D: High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance Gene pfmdr1. / J Infect Dis 2001,183(10):1535鈥?538. CrossRef
    13. Duraisingh MT, von Seidlein LV, Jepson A, Jones P, Sambou I, Pinder M, Warhurst DC: Linkage disequilibrium between two chromosomally distinct loci associated with increased resistance to chloroquine in Plasmodium falciparum. / Parasitology 2000,121(Pt 1):1鈥?. CrossRef
    14. Valderramos SG, Valderramos JC, Musset L, Purcell LA, Mercereau-Puijalon O, Legrand E, Fidock DA: Identification of a mutant PfCRT-mediated chloroquine tolerance phenotype in Plasmodium falciparum. / PLoS Pathog 2010,6(5):e1000887. CrossRef
    15. Nomura T, Carlton JM, Baird JK, del Portillo HA, Fryauff DJ, Rathore D, Fidock DA, Su X, Collins WE, McCutchan TF, / et al.: Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. / J Infect Dis 2001,183(11):1653鈥?661. CrossRef
    16. Hunt P, Cravo PV, Donleavy P, Carlton JM, Walliker D: Chloroquine resistance in Plasmodium chabaudi: are chloroquine-resistance transporter (crt) and multi-drug resistance (mdr1) orthologues involved? / Mol Biochem Parasitol 2004,133(1):27鈥?5. CrossRef
    17. Rosario VE: Genetics of chloroquine resistance in malaria parasites. / Nature 1976,261(5561):585鈥?86. CrossRef
    18. Padua RA: Plasmodium chabaudi: genetics of resistance to chloroquine. / Exp Parasitol 1981,52(3):419鈥?26. CrossRef
    19. Carlton J, Mackinnon M, Walliker D: A chloroquine resistance locus in the rodent malaria parasite Plasmodium chabaudi. / Mol Biochem Parasitol 1998,93(1):57鈥?2. CrossRef
    20. Hunt P, Martinelli A, Fawcett R, Carlton J, Carter R, Walliker D: Gene synteny and chloroquine resistance in Plasmodium chabaudi. / Mol Biochem Parasitol 2004,136(2):157鈥?64. CrossRef
    21. Hayton K, Su XZ: Drug resistance and genetic mapping in Plasmodium falciparum. / Curr Genet 2008,54(5):223鈥?39. CrossRef
    22. Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su XZ, Wellems TE: Dissecting the loci of low-level quinine resistance in malaria parasites. / Mol Microbiol 2004,52(4):985鈥?97. CrossRef
    23. Beez D, Sanchez CP, Stein WD, Lanzer M: Genetic predisposition favors the acquisition of stable artemisinin resistance in malaria parasites. / Antimicrob Agents Chemother 2011,55(1):50鈥?5. CrossRef
    24. Mu J, Awadalla P, Duan J, McGee KM, Keebler J, Seydel K, McVean GA, Su XZ: Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. / Nat Genet 2007,39(1):126鈥?30. CrossRef
    25. Van Tyne D, Park DJ, Schaffner SF, Neafsey DE, Angelino E, Cortese JF, Barnes KG, Rosen DM, Lukens AK, Daniels RF, / et al.: Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum. / PLoS Genet 2011,7(4):e1001383. CrossRef
    26. Yuan J, Cheng KC, Johnson RL, Huang R, Pattaradilokrat S, Liu A, Guha R, Fidock DA, Inglese J, Wellems TE, / et al.: Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets. / Science 2011,333(6043):724鈥?29. CrossRef
    27. Carter R, Hunt P, Cheesman S: Linkage Group Selection--a fast approach to the genetic analysis of malaria parasites. / Int J Parasitol 2007,37(3鈥?):285鈥?93. CrossRef
    28. Hunt P, Afonso A, Creasey A, Culleton R, Sidhu AB, Logan J, Valderramos SG, McNae I, Cheesman S, do Rosario V, / et al.: Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. / Mol Microbiol 2007,65(1):27鈥?0. CrossRef
    29. Hunt P, Martinelli A, Modrzynska K, Borges S, Creasey A, Rodrigues L, Beraldi D, Loewe L, Fawcett R, Kumar S, / et al.: Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites. / BMC Genomics 2010,11(1):499. CrossRef
    30. Martinelli A, Henriques G, Cravo P, Hunt P: Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs. / Int J Parasitol 2011,41(2):165鈥?71. CrossRef
    31. Borges S, Cravo P, Creasey A, Fawcett R, Modrzynska K, Rodrigues L, Martinelli A, Hunt P: Genomewide Scan Reveals Amplification of mdr1 as a Common Denominator of Resistance to Mefloquine, Lumefantrine, and Artemisinin in Plasmodium chabaudi Malaria Parasites. / Antimicrob Agents Chemother 2011,55(10):4858鈥?865. CrossRef
    32. Culleton R, Martinelli A, Hunt P, Carter R: Linkage group selection: rapid gene discovery in malaria parasites. / Genome Res 2005,15(1):92鈥?7. CrossRef
    33. Cheesman S, Creasey A, Degnan K, Kooij T, Afonso A, Cravo P, Carter R, Hunt P: Validation of Pyrosequencing for accurate and high throughput estimation of allele frequencies in malaria parasites. / Mol Biochem Parasitol 2007,152(2):213鈥?19. CrossRef
    34. Grech K, Martinelli A, Pathirana S, Walliker D, Hunt P, Carter R: Numerous, robust genetic markers for Plasmodium chabaudi by the method of amplified fragment length polymorphism. / Mol Biochem Parasitol 2002,123(2):95鈥?04. CrossRef
    35. Cravo PV, Carlton JM, Hunt P, Bisoni L, Padua RA, Walliker D: Genetics of mefloquine resistance in the rodent malaria parasite Plasmodium chabaudi. / Antimicrob Agents Chemother 2003,47(2):709鈥?18. CrossRef
    36. Martin RE, Kirk K: The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. / Mol Biol Evol 2004,21(10):1938鈥?949. CrossRef
    37. Jiang H, Patel JJ, Yi M, Mu J, Ding J, Stephens R, Cooper RA, Ferdig MT, Su XZ: Genome-wide compensatory changes accompany drug- selected mutations in the Plasmodium falciparum crt gene. / PLoS One 2008,3(6):e2484. CrossRef
    38. Warhurst D, Killick-Kendrick R: Spontaneous resistance to chloroquine in a strain of rodent malaria (Plasmodium berghei yoelii). / Nature 1967, 213:1048鈥?049. CrossRef
    39. Janssen CS, Phillips RS, Turner CM, Barrett MP: Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. / Nucleic Acids Res 2004,32(19):5712鈥?720. CrossRef
    40. Cheng Q, Saul A: The dihydrofolate reductase domain of rodent malarias: point mutations and pyrimethamine resistance. / Mol Biochem Parasitol 1994,65(2):361鈥?63. CrossRef
    41. de Roode JC, Helinski ME, Anwar MA, Read AF: Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. / Am Nat 2005,166(5):531鈥?42. CrossRef
    42. de Roode JC, Pansini R, Cheesman SJ, Helinski ME, Huijben S, Wargo AR, Bell AS, Chan BH, Walliker D, Read AF: Virulence and competitive ability in genetically diverse malaria infections. / Proc Natl Acad Sci USA 2005,102(21):7624鈥?628. CrossRef
    43. Miki A, Tanabe K, Nakayama T, Kiryon C, Ohsawa K: Plasmodium chabaudi: association of reversal of chloroquine resistance with increased accumulation of chloroquine in resistant parasites. / Exp Parasitol 1992,74(2):134鈥?42. CrossRef
    44. Ohsawa K, Tanabe K, Kimata I, Miki A: Ultrastructural changes associated with reversal of chloroquine resistance by verapamil in Plasmodium chabaudi. / Parasitology 1991,103(Pt 2):185鈥?89. CrossRef
    45. Tanabe K, Kato M, Izumo A, Hagiwara A, Doi S: Plasmodium chabaudi: in vivo effects of Ca2+ antagonists on chloroquine-resistant and chloroquine-sensitive parasites. / Exp Parasitol 1990,70(4):419鈥?26. CrossRef
    46. Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L: Dissection of genetically complex traits with extremely large pools of yeast segregants. / Nature 2010,464(7291):1039鈥?042. CrossRef
    47. Dharia NV, Sidhu AB, Cassera MB, Westenberger SJ, Bopp SE, Eastman RT, Plouffe D, Batalov S, Park DJ, Volkman SK, / et al.: Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. / Genome Biol 2009,10(2):R21. CrossRef
    48. Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, / et al.: Spiroindolones, a potent compound class for the treatment of malaria. / Science 2010,329(5996):1175鈥?180. CrossRef
    49. Carter R, Walliker D: New observations on the malaria parasites of rodents of the Central African Republic - Plasmodium vinckei petteri subs. nov. and Plasmodium chabaudi Landau 1965. / Annals of Tropical Medicine and Parasitology 1975, 69:187鈥?96.
    50. Walliker D, Carter R, Sanderson A: Genetic studies on Plasmodium chabaudi: recombination between enzyme markers. / Parasitology 1975,70(1):19鈥?4. CrossRef
    51. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. / Genome Res 2008,18(11):1851鈥?858. CrossRef
    52. Ning Z, Cox AJ, Mullikin JC: SSAHA: a fast search method for large DNA databases. / Genome Res 2001,11(10):1725鈥?729. CrossRef
    53. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler Transform. / Bioinfomatics 2009, 25:1754鈥?760. CrossRef
    54. Hunt P, Fawcett R, Carter R, Walliker D: Estimating SNP proportions in populations of malaria parasites by sequencing: validation and applications. / Mol Biochem Parasitol 2005,143(2):173鈥?82. CrossRef
    55. Afonso A, Hunt P, Cheesman S, Alves AC, Cunha CV, do Rosario V, Cravo P: Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. / Antimicrob Agents Chemother 2006,50(2):480鈥?89. CrossRef
    56. Carlton JM, Hayton K, Cravo PV, Walliker D: Of mice and malaria mutants: unravelling the genetics of drug resistance using rodent malaria models. / Trends Parasitol 2001,17(5):236鈥?42. CrossRef
  • 作者单位:Katarzyna Kinga Modrzynska (1) (8)
    Alison Creasey (1)
    Laurence Loewe (2)
    Timothee Cezard (3)
    Sofia Trindade Borges (4) (9)
    Axel Martinelli (5)
    Louise Rodrigues (10) (5)
    Pedro Cravo (11) (5)
    Mark Blaxter (3) (6)
    Richard Carter (1)
    Paul Hunt (1) (7)

    1. Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
    8. The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
    2. Laboratory of Genetics and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, USA
    3. The GenePool, University of Edinburgh, Edinburgh, UK
    4. Centro de Malaria e Outras Doen莽as Tropicais/IHMT/UEI Malaria, Lisbon, Portugal
    9. Research Unit and Cardiology department, Funchal Hospital Center, Funchal, Madeira, Portugal
    5. Centro de Malaria e Outras Doen莽as Tropicais/IHMT/UEI Biologia Molecular, Lisbon, Portugal
    10. Microbiology, Molecular Genetics and Immunology, Kansas University Medical Center, Kansas City, USA
    11. IPTSP, Universidade Federal de Goi谩s, Goi芒nia, Brasil
    6. Institute for Evolutionary Biology, University of Edinburgh, Edinburgh, UK
    7. Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
文摘
Background Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions. Results Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter. Conclusions Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short-read genome resequencing can be used to reveal these signatures of drug selection at high resolution. The identities of three genes (and mutations within them) conferring different levels of chloroquine resistance generate insights regarding the genetic architecture and mechanisms of resistance to chloroquine and other drugs. Importantly, their orthologues may now be evaluated for critical or accessory roles in chloroquine resistance in human malarias P. vivax and P. falciparum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700