Monitoring gas leakages simulated in a near surface aquifer of the Ellerbek paleo-channel
详细信息    查看全文
  • 作者:Said A. al Hagrey ; Dirk Schäfer ; Daniel Köhn…
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:75
  • 期:14
  • 全文大小:4,771 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
  • 卷排序:75
文摘
Renewable energy resources are intermittent and need buffer storage to bridge the time-gap between production and demand peaks. The North German Basin has a very large capacity for compressed air/gas energy storage (CAES) in porous saltwater reservoirs and salt cavities. Even though these geological storage systems are constructed with high caution, accidental gas leakages occurred in the past. Stored gases migrated from deep reservoirs along permeable zones upwards into shallow potable aquifers. These CAES leakages cause changes in the electro-elastic properties, and density of the aquifers, and therefore justify investigations with the application of different geophysical techniques. A multiphase flow simulation has been performed to create a realistic virtual CAES leakage scenario into a shallow aquifer in Northern Germany. This scenario is used to demonstrate the detecting resolution capability of a combined geophysical monitoring approach, consisting of acoustic joint waveform inversion (FWI) of surface and borehole data, electrical resistivity tomography (ERT) and gravity. This combined approach of geophysical multi-techniques was able to successfully map the shape and determine the physical properties of the simulated gas phase body at a very early stage after leakage began. Techniques of FWI and ERT start to resolve CAES leakage anomalies only a few years and gravity even a few months after leakage began. Geophysical monitoring of vast areas may start by conducting time-effective aero-surveys (e.g. electromagnetic induction or gravity gradient methods) to isolate anomalous subareas of potential leakage risks. These subareas are then studied in detail using our combined high-resolution approach. In conclusion, our approach is sensitive to CAES leakages and can be used for monitoring.KeywordsRenewable energyCompressed air energy storageMultiphase simulationGeophysical monitoringWaveform inversionElectrical resistivity tomographyGravity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700