Manipulation of Magnetic Fano Resonances in Double Split-Hole Disk
详细信息    查看全文
  • 作者:Kaijun Zhao ; Yiping Huo ; Tingzhuo Liu ; Yanni Wu ; Ting Zhao ; Li Liu ; Yuan Li…
  • 关键词:Magnetic Fano resonance ; Bright electric modes ; Dark magnetic modes ; Closed current
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:269-275
  • 全文大小:5,276 KB
  • 参考文献:1.Liu N, Guo HC, Fu LW, Kaiser S, Schweizer H, Giessen H (2008) Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 7(1):31–37CrossRef
    2.Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angew Chem Int Ed 49(51):9838–9852CrossRef
    3.Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11:917–924CrossRef
    4.Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496CrossRef
    5.Shalaev VM (2007) Optical negative index metamaterials. Nat Photonics 1:41–48CrossRef
    6.Liu N, Mukherjee S, Bao K, Brown LV, Dorfmüller J, Nordlander P, Halas NJ (2009) Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Letter 12:364–369CrossRef
    7.Sheikholeslami SN, García-Etxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Letter 11:3927–3934CrossRef
    8.Nazir A, Panaro S, Proietti Zaccaria R, Liberale C, De Angelis F, Toma A (2014) Fano coil-type resonance for magnetic hot-spot generation. Nano Letter 14:3166–3171CrossRef
    9.Lahiri B, McMeekin SG, Khokhar AZ, De la Rue RM, Johnson NP (2010) Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt Express 18:3210–3218CrossRef
    10.Filonov DS, Slobozhanyuk AP, Krasnok AE, Belov PA, Nenasheva EA, Hopkins B, Miroshnichenko AE, Kivshar YS (2014) Near-field mapping of Fano resonances in all-dielectric oligomers. Appl Phys Lett 104:021104CrossRef
    11.Wu DJ, Jiang SM, Liu XJ (2011) Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell. J Phys Chem C 115:23797–23801CrossRef
    12.Cai DJ, Huang YH, Wang WJ, Ji WB, Chen JD, Chen ZH, Liu SD (2015) Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry. J Phys Chem C 119:4252–4260CrossRef
    13.Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 3:1664–1670CrossRef
    14.Lovera A, Gallinet B, Nordlander P, Martin OJF (2013) Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 5:4527–4536CrossRef
    15.Feng H, Nordlander P (2007) Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Phys Rev B 76:245417CrossRef
    16.Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 113:4028–4034CrossRef
    17.Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701CrossRef
    18.Fernandes DE, Maslovski SI, Hanson GW, Silveirinha MG (2013) Fano resonances in nested wire media. Phys Rev B 88:045130CrossRef
    19.Zhao K, Huo Y, Liu T, Li J, He B, Zhao T, Liu L, Li Y (2015) Manipulation of electrical field enhancements and Fano resonances in nanoellipsoid/ring plasmonic cavities. Plasmonics 10:1–8. doi:10.​1007/​s11468-015-9899-0 CrossRef
    20.Thyagarajan K, Butet J, Martin OJF (2013) Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Letter 13:1847–1851CrossRef
    21.Zhang Z, Weber-Bargioni A, Wu SW, Dhuey S, Cabrini S, Schuck PJ (2009) Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Letter 9:4505–4509CrossRef
    22.Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897CrossRef
    23.Miroshnichenko AE, Luk’yanchuk B, Maier SA, Kivshar YS (2012) Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 1:837–842CrossRef
    24.Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10:4680–4685CrossRef
    25.Tassin P, Zhang L, Koschny T, Economou EN, Soukoulis CM (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102:053901CrossRef
    26.Naether U, Molina MI (2011) Fano resonances in magnetic metamaterials. Phys Rev A 84:043808CrossRef
    27.Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou JF (2005) Magnetic metamaterials at telecommunication and visible frequencies. Phys Rev Lett 95:203901CrossRef
    28.Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRef
    29.Azad AK, Dai J, Zhang W (2006) Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt Lett 5:634–636CrossRef
    30.Liu H, Genov DA, Wu DM, Liu YM, Steele JM, Sun C, Zhu SN, Zhang X (2006) Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies. Physical Rev Letter 97:243902CrossRef
    31.Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics a route to nanoscale optical devices. Adv Mater 13:1501CrossRef
    32.Maier S, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101CrossRef
    33.Shamonina E, Kalinin VA, Ringhofer KH, Solymar L (2002) Magneto inductive waveguide. Electron Lett 38:371–373CrossRef
    34.Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379CrossRef
    35.Hao F, Larsson EM, Ali TA, Sutherland DS, Nordlander P (2008) Shedding light on dark plasmons in gold nanorings. Chem Phys Lett 458:262–266CrossRef
    36.Verellen N, Van Dorpe P, Huang CJ, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397CrossRef
    37.Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137CrossRef
    38.Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038CrossRef
    39.Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107CrossRef
    40.Wu Y, Zheng H, Li J, Wang C, Li C, Dong J (2015) Generation and manipulation of ultrahigh order plasmon resonances in visible and near-infrared region. Opt Express 8:10836–10846CrossRef
    41.Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 11:3931–3988
  • 作者单位:Kaijun Zhao (1)
    Yiping Huo (1)
    Tingzhuo Liu (1)
    Yanni Wu (1)
    Ting Zhao (1)
    Li Liu (1)
    Yuan Li (1)
    Junchen Deng (1)
    Hairong Zheng (1)

    1. School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710062, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
The plasmon resonances and magnetic field enhancement in double split-hole disk are investigated by using finite element method. The multipolar modes and the magnetic Fano resonances of the double split-hole disk can be tuned by modifying the structure parameters. The oscillate direction of the closed current in the right and the left split hole can be tuned, achieving the bright and dark magnetic modes of this system. These new emergent phenomena in this nanostructure have potential applications in the propagation of low-loss magnetic plasmons and advanced devices based on magnetic Fano resonances. Keywords Magnetic Fano resonance Bright electric modes Dark magnetic modes Closed current

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700