Genetic variants in ADAM33 are associated with airway inflammation and lung function in COPD
详细信息    查看全文
  • 作者:Xinyan Wang (7)
    Wan Li (8)
    Kun Huang (7)
    Xiaowen Kang (7)
    Zhaoguo Li (7)
    Chengcheng Yang (7)
    Xiaomei Wu (7)
    Lina Chen (8)

    7. Department of Respiratory
    ; the Second Affiliated Hospital of Harbin Medical University ; Harbin ; 150081 ; China
    8. College of Bioinformatics Science and Technology
    ; Harbin Medical University ; Harbin ; 150081 ; China
  • 关键词:Chronic obstructive pulmonary disease ; SNP ; ADAM33 ; Haplotype ; Pulmonary function ; Airway inflammatory process
  • 刊名:BMC Pulmonary Medicine
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:983 KB
  • 参考文献:1. Vestbo, J, Hurd, SS, Agusti, AG, Jones, PW, Vogelmeier, C, Anzueto, A, Barnes, PJ, Fabbri, LM, Martinez, FJ, Nishimura, M, Stockley, RA, Sin, DD, Rodriguez-Roisin, R (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187: pp. 347-365 CrossRef
    2. Rabe, KF, Hurd, S, Anzueto, A, Barnes, PJ, Buist, SA, Calverley, P, Fukuchi, Y, Jenkins, C, Rodriguez-Roisin, R, van Weel, C, Zielinski, J (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176: pp. 532-555 CrossRef
    3. Lokke, A, Lange, P, Scharling, H, Fabricius, P, Vestbo, J (2006) Developing COPD: a 25聽year follow up study of the general population. Thorax 61: pp. 935-939 CrossRef
    4. Pabst, S, Bradler, O, Gillissen, A, Nickenig, G, Skowasch, D, Grohe, C (2013) Toll-like receptor-9 polymorphisms in sarcoidosis and chronic obstructive pulmonary disease. Adv Exp Med Biol 756: pp. 239-245 CrossRef
    5. Kim, WJ, Oh, YM, Lee, JH, Park, CS, Park, SW, Park, JS, Lee, SD (2013) Genetic variants in HHIP are associated with FEV1 in subjects with COPD. Respirology 18: pp. 1202-1209 CrossRef
    6. Zhou, H, Yang, J, Li, D, Xiao, J, Wang, B, Wang, L, Ma, C, Xu, S, Ou, X, Feng, Y (2012) Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet 57: pp. 738-746 CrossRef
    7. Bafadhel, M, McKenna, S, Terry, S, Mistry, V, Pancholi, M, Venge, P, Lomas, DA, Barer, MR, Johnston, SL, Pavord, ID, Brightling, CE (2012) Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am J Respir Crit Care Med 186: pp. 48-55 CrossRef
    8. Kojima, J, Araya, J, Hara, H, Ito, S, Takasaka, N, Kobayashi, K, Fujii, S, Tsurushige, C, Numata, T, Ishikawa, T, Shimizu, K, Kawaishi, M, Saito, K, Kamiya, N, Hirano, J, Odaka, M, Morikawa, T, Hano, H, Arai, S, Miyazaki, T, Kaneko, Y, Nakayama, K, Kuwano, K (2013) Apoptosis inhibitor of macrophage (AIM) expression in alveolar macrophages in COPD. Respir Res 14: pp. 30 CrossRef
    9. Mallia, P, Message, SD, Contoli, M, Gray, KK, Telcian, A, Laza-Stanca, V, Papi, A, Stanciu, LA, Elkin, S, Kon, OM, Johnson, M, Johnston, SL (2013) Neutrophil adhesion molecules in experimental rhinovirus infection in COPD. Respir Res 14: pp. 72 CrossRef
    10. Manral, S, Bhatia, S, Sinha, R, Kumar, A, Rohil, V, Arya, A, Dhawan, A, Arya, P, Joshi, R, Sreedhara, SC, Gangopadhyay, S, Bansal, SK, Chatterjee, S, Chaudhury, NK, Vijayan, VK, Saso, L, Parmar, VS, DePass, AL, Prasad, AK, Raj, HG (2011) Normalization of deranged signal transduction in lymphocytes of COPD patients by the novel calcium channel blocker H-DHPM. Biochimie 93: pp. 1146-1156 CrossRef
    11. Nadigel, J, Audusseau, S, Baglole, CJ, Eidelman, DH, Hamid, Q (2013) IL-8 production in response to cigarette smoke is decreased in epithelial cells from COPD patients. Pulm Pharmacol Ther 26: pp. 596-602 CrossRef
    12. Hubeau, C, Kubera, JE, Masek-Hammerman, K, Williams, CM (2013) Interleukin-6 neutralization alleviates pulmonary inflammation in mice exposed to cigarette smoke and poly(I:C). Clin Sci (Lond) 125: pp. 483-493 CrossRef
    13. Zhang, PF, Pan, L, Luo, ZY, Zhao, HJ, Cai, SX (2013) Interrelationship of circulating matrix metalloproteinase-9, TNF-a, and OPG/RANK/RANKL systems in COPD patients with osteoporosis. Copd 10: pp. 650-656 CrossRef
    14. Lee, CG, Ma, B, Takyar, S, Ahangari, F, Delacruz, C, He, CH, Elias, JA (2011) Studies of vascular endothelial growth factor in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 8: pp. 512-515 CrossRef
    15. Holgate, ST, Yang, Y, Haitchi, HM, Powell, RM, Holloway, JW, Yoshisue, H, Pang, YY, Cakebread, J, Davies, DE (2006) The genetics of asthma: ADAM33 as an example of a susceptibility gene. Proc Am Thorac Soc 3: pp. 440-443 CrossRef
    16. Chi, X, Wang, L, Wang, J, Li, Q, Wang, X, Xiao, W (2013) Association of ADAM33 gene polymorphisms with asthma in a Chinese population. Clin Respir J 7: pp. 16-20 CrossRef
    17. Tripathi, P, Awasthi, S, Prasad, R, Ganesh, S (2012) Haplotypic association of ADAM33 (T鈥?鈥?, S鈥?鈥? and V - 3) gene variants in genetic susceptibility to asthma in Indian population. Ann Hum Biol 39: pp. 479-483 CrossRef
    18. Przemyslaw, L, Boguslaw, HA, Elzbieta, S, Malgorzata, SM (2013) ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis. BMB Rep 46: pp. 139-150 CrossRef
    19. Miller, MA, Meyer, AS, Beste, MT, Lasisi, Z, Reddy, S, Jeng, KW, Chen, CH, Han, J, Isaacson, K, Griffith, LG, Lauffenburger, DA (2013) ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 110: pp. E2074-E2083 CrossRef
    20. Christian, LM (2012) The ADAM family: insights into Notch proteolysis. Fly 6: pp. 30-34 CrossRef
    21. Garlisi, CG, Zou, J, Devito, KE, Tian, F, Zhu, FX, Liu, J, Shah, H, Wan, Y, Motasim Billah, M, Egan, RW, Umland, SP (2003) Human ADAM33: protein maturation and localization. Biochem Biophys Res Commun 301: pp. 35-43 CrossRef
    22. Puxeddu, I, Pang, YY, Harvey, A, Haitchi, HM, Nicholas, B, Yoshisue, H, Ribatti, D, Clough, G, Powell, RM, Murphy, G, Hanley, NA, Wilson, DI, Howarth, PH, Holgate, ST, Davies, DE (2008) The soluble form of a disintegrin and metalloprotease 33 promotes angiogenesis: implications for airway remodeling in asthma. J Allergy Clin Immunol 121: pp. 1400-1406 CrossRef
    23. Miyake, Y, Tanaka, K, Arakawa, M (2012) ADAM33 polymorphisms, smoking and asthma in Japanese women: the Kyushu Okinawa Maternal and Child Health Study. Int J Tuberc Lung Dis Off J Int Union Against Tuberc Lung Dis 16: pp. 974-979 CrossRef
    24. Reijmerink, NE, Kerkhof, M, Koppelman, GH, Gerritsen, J, de Jongste, JC, Smit, HA, Brunekreef, B, Postma, DS (2009) Smoke exposure interacts with ADAM33 polymorphisms in the development of lung function and hyperresponsiveness. Allergy 64: pp. 898-904 CrossRef
    25. Figarska, SM, Vonk, JM, van Diemen, CC, Postma, DS, Boezen, HM (2013) ADAM33 gene polymorphisms and mortality. A prospective cohort study. PloS one 8: pp. e67768 CrossRef
    26. Sadeghnejad, A, Ohar, JA, Zheng, SL, Sterling, DA, Hawkins, GA, Meyers, DA, Bleecker, ER (2009) Adam33 polymorphisms are associated with COPD and lung function in long-term tobacco smokers. Respir Res 10: pp. 21 CrossRef
    27. Gosman, MM, Boezen, HM, van Diemen, CC, Snoeck-Stroband, JB, Lapperre, TS, Hiemstra, PS, Ten Hacken, NH, Stolk, J, Postma, DS (2007) A disintegrin and metalloprotease 33 and chronic obstructive pulmonary disease pathophysiology. Thorax 62: pp. 242-247 CrossRef
    28. van Diemen, CC, Postma, DS, Vonk, JM, Bruinenberg, M, Schouten, JP, Boezen, HM (2005) A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med 172: pp. 329-333 CrossRef
    29. Wang, X, Li, L, Xiao, J, Jin, C, Huang, K, Kang, X, Wu, X, Lv, F (2009) Association of ADAM33 gene polymorphisms with COPD in a northeastern Chinese population. BMC Med Genet 10: pp. 132 CrossRef
    30. Black, RA, White, JM (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10: pp. 654-659 CrossRef
    31. Holz, O, Jorres, RA, Koschyk, S, Speckin, P, Welker, L, Magnussen, H (1998) Changes in sputum composition during sputum induction in healthy and asthmatic subjects. Clin Exp Allergy J Br Soc Allergy Clin Immunol 28: pp. 284-292 CrossRef
    32. Purcell, S, Neale, B, Todd-Brown, K, Thomas, L, Ferreira, MA, Bender, D, Maller, J, Sklar, P, de Bakker, PI, Daly, MJ, Sham, PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: pp. 559-575 CrossRef
    33. Holgate, ST, Davies, DE, Powell, RM, Holloway, JW (2006) ADAM33: a newly identified protease involved in airway remodelling. Pulm Pharmacol Ther 19: pp. 3-11 CrossRef
    34. Hashimoto, M, Tanaka, H, Abe, S (2005) Quantitative analysis of bronchial wall vascularity in the medium and small airways of patients with asthma and COPD. Chest 127: pp. 965-972 CrossRef
    35. Winkler, AR, Nocka, KH, Sulahian, TH, Kobzik, L, Williams, CM (2008) In vitro modeling of human alveolar macrophage smoke exposure: enhanced inflammation and impaired function. Exp Lung Res 34: pp. 599-629 CrossRef
    36. Domagala-Kulawik, J, Maskey-Warzechowska, M, Hermanowicz-Salamon, J, Chazan, R (2006) Expression of macrophage surface markers in induced sputum of patients with chronic obstructive pulmonary disease. J Physiol Pharmacol Off J Pol Physiol Soc 57: pp. 75-84
    37. Hackett, TL, Stefanowicz, D, Aminuddin, F, Sin, DD, Connett, JE, Anthonisen, NR, Pare, PD, Sandford, AJ (2011) Effect of gene environment interactions on lung function and cardiovascular disease in COPD. Int J Chronic Obstructive Pulm Dis 6: pp. 277-287 CrossRef
    38. Jongepier, H, Boezen, HM, Dijkstra, A, Howard, TD, Vonk, JM, Koppelman, GH, Zheng, SL, Meyers, DA, Bleecker, ER, Postma, DS (2004) Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol 34: pp. 757-760 CrossRef
    39. Washko, GR, Dransfield, MT, Estepar, RS, Diaz, A, Matsuoka, S, Yamashiro, T, Hatabu, H, Silverman, EK, Bailey, WC, Reilly, JJ (2009) Airway wall attenuation: a biomarker of airway disease in subjects with COPD. J Appl Physiol 107: pp. 185-191 CrossRef
    40. Yoshinaka, T, Nishii, K, Yamada, K, Sawada, H, Nishiwaki, E, Smith, K, Yoshino, K, Ishiguro, H, Higashiyama, S (2002) Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity. Gene 282: pp. 227-236 CrossRef
    41. Kheradmand, F, Rishi, K, Werb, Z (2002) Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 115: pp. 839-848
    42. Powell, RM, Wicks, J, Holloway, JW, Holgate, ST, Davies, DE (2004) The splicing and fate of ADAM33 transcripts in primary human airways fibroblasts. Am J Respir Cell Mol Biol 31: pp. 13-21 CrossRef
    43. Das, M, Harvey, I, Chu, LL, Sinha, M, Pelletier, J (2001) Full-length cDNAs: more than just reaching the ends. Physiol Genomics 6: pp. 57-80
    44. Umland, SP, Garlisi, CG, Shah, H, Wan, Y, Zou, J, Devito, KE, Huang, WM, Gustafson, EL, Ralston, R (2003) Human ADAM33 messenger RNA expression profile and post-transcriptional regulation. Am J Respir Cell Mol Biol 29: pp. 571-582 CrossRef
    45. Siafakas, NM, Antoniou, KM, Tzortzaki, EG (2007) Role of angiogenesis and vascular remodeling in chronic obstructive pulmonary disease. Int J Chronic Obstructive Pulm Dis 2: pp. 453-462
    46. Plataki, M, Tzortzaki, E, Rytila, P, Demosthenes, M, Koutsopoulos, A, Siafakas, NM (2006) Apoptotic mechanisms in the pathogenesis of COPD. Int J Chronic Obstructive Pulm Dis 1: pp. 161-171
    47. Shapiro, SD (2000) Vascular atrophy and VEGFR-2 signaling: old theories of pulmonary emphysema meet new data. J Clin Invest 106: pp. 1309-1310 CrossRef
    48. Paulissen, G, Rocks, N, Gueders, MM, Crahay, C, Quesada-Calvo, F, Bekaert, S, Hacha, J, El Hour, M, Foidart, JM, Noel, A, Cataldo, DD (2009) Role of ADAM and ADAMTS metalloproteinases in airway diseases. Respir Res 10: pp. 127 CrossRef
    49. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2466/14/173/prepub
  • 刊物主题:Pneumology/Respiratory System; Internal Medicine;
  • 出版者:BioMed Central
  • ISSN:1471-2466
文摘
Background Genetic factors play a role in the development and severity of chronic obstructive pulmonary disease (COPD). The pathogenesis of COPD is a multifactorial process including an inflammatory cell profile. Recent studies revealed that single nucleotide polymorphisms (SNPs) within ADAM33 increased the susceptibility to COPD through changing the airway inflammatory process and lung function. Methods In this paper, we investigated associations of four polymorphisms (T1, T2, S2 and Q-1) of ADAM33 as well as their haplotypes with pulmonary function and airway inflammatory process in an East Asian population of patients with COPD. Results We found that T1, T2 and Q-1 were significantly associated with the changes of pulmonary function and components of cells in sputum of COPD, and T1 and Q-1 were significantly associated with cytokines and mediators of inflammation in airway of COPD in recessive models. 10 haplotypes were significantly associated with transfer factor of the lung for carbon monoxide in the disease state, 4 haplotypes were significantly associated with forced expiratory volume in one second, and other haplotypes were associated with airway inflammation. Conclusions We confirmed for the first time that ADAM33 was involved in the pathogenesis of COPD by affecting airway inflammation and immune response in an East Asian population. Our results made the genetic background of COPD, a common and disabling disease, more apparent, which would supply genetic support for the study of the mechanism, classification and treatment for this disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700