Short interspersed DNA elements and miRNAs: a novel hidden gene regulation layer in zebrafish?
详细信息    查看全文
  • 作者:Margherita Scarpato ; Claudia Angelini ; Ennio Cocca…
  • 关键词:Retrotransposons ; SINEs ; miRNA ; 3′UTR
  • 刊名:Chromosome Research
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:23
  • 期:3
  • 页码:533-544
  • 全文大小:1,561 KB
  • 参考文献:Acunzo M, Croce CM (2015) MicroRNA in cancer and cachexia—a mini-review. J Infect Dis 212:S74–S77CrossRef PubMed
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRef PubMed
    Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90CrossRef PubMed
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300
    Bohne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN (2008) Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosom Res 16:203–215CrossRef
    Caceres M, Puig M, Ruiz A (2001) Molecular characterization of two natural hotspots in the Drosophila buzzatii genome induced by transposon insertions. Genome Res 11:1353–1364PubMedCentral CrossRef PubMed
    Capriglione T, Odierna G, Caputo V, Canapa A, Olmo E (2002) Characterization of a Tc1-like transposon in the Antarctic ice-fish, Chionodraco hamatus. Gene 295:193–198CrossRef PubMed
    Capriglione T, De Paolo S, Cocca E (2014) Helinoto, a Helitron2 transposon from the icefish Chionodraco hamatus, contains a region with three deubiquitinase-like domains that exhibit transcriptional activity. Comp Biochem Physiol Part D Genomics Proteomics 11:49–58CrossRef PubMed
    Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedCentral CrossRef PubMed
    Chalopin D, Galiana D, Volff JN (2012) Genetic innovation in vertebrates: gypsy integrase genes and other genes derived from transposable elements. Int J Evol Biol 2012, 724519. doi:10.​1155/​2012/​724519 , 11 pagesPubMedCentral CrossRef PubMed
    Chalopin D, Naville M, Plard F, Galiana D, Volff JN (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7:567–580PubMedCentral CrossRef PubMed
    Chen LL, Carmichael GG (2008) Gene regulation by SINEs and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 7:3294–3301CrossRef PubMed
    Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103CrossRef PubMed
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86CrossRef PubMed
    Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509:7–15CrossRef PubMed
    Cocca E, De Iorio S, Capriglione T (2011) Identification of a novel helitron transposon in the genome of Antarctic fish. Mol Phyl Evol 58:439–446CrossRef
    Daskalova E, Baev V, Rusinov V, Minkov I (2007) 3'UTR-located ALU elements: donors of potential miRNA target sites and mediators of network miRNA-based regulatory interactions. Evol Bioinformatics Online 2:103–120
    Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13:651–658CrossRef PubMed
    Devor EJ, Peek AS, Lanier W, Samollow PB (2009) Marsupial-specific microRNAs evolved from marsupial-specific transposable elements. Gene 448:187–191PubMedCentral CrossRef PubMed
    Eickbush TH, Jamburuthugoda VK (2008) The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res 134:221–234PubMedCentral CrossRef PubMed
    Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368PubMedCentral CrossRef PubMed
    Gallus S, Kumar V, Bertelsen MF, Janke A, M A (2015) A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla)
    Gu TJ, Yi X, Zhao XW, Zhao Y, Yin JQ (2009) Alu-directed transcriptional regulation of some novel miRNAs. BMC Genomics 10:563PubMedCentral CrossRef PubMed
    Ha M, Pang M, Agarwal V, Chen ZJ (2008) Interspecies regulation of miRNAs and their targets. BBA 1179:735–742
    Hassan MQ, Tye CE, Stein GS, Lian JB (2015) Non-coding RNAs: epigenetic regulators of bone development and homeostasis. Bone
    Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 105:2946–2950PubMedCentral CrossRef PubMed
    Hoffman Y, Pilpel Y, Oren M (2014) microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol 6(3):192–197PubMedCentral CrossRef PubMed
    Hsu K, Chang DY, Maraia RJ (1995) Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. J Biol Chem 270:10179–10186CrossRef PubMed
    Jung YD, Ahn K, Kim YJ, Bae JH, Lee JR, Kim HS (2013) Retroelements: molecular features and implications for disease. Genes Genet Syst 88:31–43CrossRef PubMed
    Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32(Database issue):D493-6PubMed
    Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632CrossRef PubMed
    Kos A, Olde Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM, Aschrafi A (2012) A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One 7, e31022PubMedCentral CrossRef PubMed
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.
    Lehnert S, Van Loo P, Thilakarathne PJ, Marynen P, Verbeke G, Schuit FC (2009) Evidence for co-evolution between human microRNAs and Alu-repeats. PLoS One 4, e4456PubMedCentral CrossRef PubMed
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRef PubMed
    Li Y, Zhang Z (2015) Computational Biology in microRNA. WIREs RNA 6:435–452CrossRef PubMed
    Liu C, Rennie WA, Mallick B, Kanoria S, Long D, Wolenc A, Carmack CS, Ding Y (2014) MicroRNA binding sites in C. elegans 3′ UTRs. RNA Biol 11:693–701PubMedCentral CrossRef PubMed
    Matveev V, Okada N (2009) Retroposons of salmonoid fishes (Actinopterygii: Salmonoidei) and their evolution. Gene 434:16–28CrossRef PubMed
    Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566CrossRef PubMed
    Nakanishi A, Kobayashi N, Suzuki-Hirano A, Nishihara H, Sasaki T, Hirakawa M, Sumiyama K, Shimogori T, Okada N (2012) A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS One 7, e43785PubMedCentral CrossRef PubMed
    Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782–786PubMedCentral CrossRef PubMed
    O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122CrossRef PubMed
    Ogiwara I, Miya M, Ohshima K, Okada N (2002) V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res 12:316–324PubMedCentral CrossRef PubMed
    Ohshima K, Okada N (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet. Genome Res 110:475–490CrossRef
    Pandey R, Mandal AK, Jha V, Mukerji M (2011) Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism. Genome Biol 12:R117PubMedCentral CrossRef PubMed
    Piriyapongsa J, Jordan IK (2007) A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2, e203PubMedCentral CrossRef PubMed
    Piriyapongsa J, Rutledge MT, Patel S, Borodovsky M, Jordan IK (2007) Evaluating the protein coding potential of exonized transposable element sequences. Biol Direct 2:31PubMedCentral CrossRef PubMed
    Platt RN, Vandewege MW, Kern C, Schmidt CJ, Hoffmann FG, Ray DA (2014) Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol Biol Evol 31:1536–1545CrossRef PubMed
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517PubMedCentral CrossRef PubMed
    SanMiguel P, Gaut BS, Tiknonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45CrossRef PubMed
    Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. Bioessays 22:148–160CrossRef PubMed
    Smalheiser NR, Torvik VI (2006) Alu elements within human mRNAs are probable microRNA targets. Trends Genet 22:532–536CrossRef PubMed
    Yang Z, Wan X, Gu Z, Zhang H, Yang X, He L, Miao R, Zhong Y, Zhao H (2014) Evolution of the mir-181 microRNA family. Comput Biol Med 52:82–87CrossRef PubMed
    Yu G, Wang LG, He QY (2015) ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics
    Zhang L, Hammell M, Kudlow BA, Ambros V, Han M (2009) Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development 136:3043–3055PubMedCentral CrossRef PubMed
  • 作者单位:Margherita Scarpato (1)
    Claudia Angelini (2)
    Ennio Cocca (3)
    Maria M. Pallotta (4)
    Maria A Morescalchi (4)
    Teresa Capriglione (4)

    1. IGB “Adriano Buzzati-Traverso” CNR, via P. Castellino, 80131, Napoli, Italy
    2. Istituto per le Applicazioni del Calcolo “M. Picone”, CNR, via P. Castellino, 80131, Napoli, Italy
    3. IBBR-CNR, via P. Castellino, 80131, Napoli, Italy
    4. Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Human Genetics
    Animal Genetics and Genomics
    Plant Genetics and Genomics
  • 出版者:Springer Netherlands
  • ISSN:1573-6849
文摘
In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3′ untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700