Empirical Model for Predicting Rockfall Trajectory Direction
详细信息    查看全文
  • 作者:Pavlos Asteriou ; George Tsiambaos
  • 关键词:Rockfall analysis ; Laboratory and field tests ; Deviation ; Coefficient of restitution ; Shape effect ; Lateral dispersion
  • 刊名:Rock Mechanics and Rock Engineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:49
  • 期:3
  • 页码:927-941
  • 全文大小:4,616 KB
  • 参考文献:Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471. doi:10.​1016/​S1365-1609(03)00021-2 CrossRef
    Dewez T et al (2010) OFAI: 3D block tracking in a real-size rockfall experiment on a weathered volcanic rocks slope of Tahiti, French Polynesia. In: Rock Slope Stability 2010, Paris
    Asteriou P, Saroglou H, Tsiambaos G (2012) Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis. Int J Rock Mech Min Sci 54:103–113. doi:10.​1016/​j.​ijrmms.​2012.​05.​029
    Asteriou P, Saroglou H, Tsiambaos G (2013a) Rockfall: scaling factors for the coefficient of restitution. In: Kwasniewski M, Lydzba D (eds) Rock mechanics for resources, energy and environment. Taylor & Francis Group, London, pp 195–200CrossRef
    Asteriou P, Saroglou H, Tsiambaos G (2013b) Rockfalls: influence of rock hardness on the trajectory of falling rock blocks. Bull Geol Soc Greece XLVII
    Azzoni A, de Freitas MH (1995) Experimentally gained parameters, decisive for rock fall analysis. Rock Mech Rock Eng 28:111–124. doi:10.​1007/​BF01020064 CrossRef
    Azzoni A, La Barbera G, Zaninetti A (1995) Analysis and prediction of rockfalls using a mathematical model. Int J Rock Mech Min Sci Geomech Abstr 32:709–724. doi:10.​1016/​0148-9062(95)00018-C CrossRef
    Bouguet JY (2008) Camera calibration toolbox for Matlab. http://​www.​vision.​caltech.​edu/​bouguetj/​calib_​doc . Accessed 20 Jan 2012
    Bourrier F, Dorren L, Nicot F, Berger F, Darve F (2009) Toward objective rockfall trajectory simulation using a stochastic impact model. Geomorphology 110:68–79. doi:10.​1016/​j.​geomorph.​2009.​03.​017 CrossRef
    Bozzolo D, Pamini R (1986) Simulation of rock falls down a valley side. Acta Mech 63:113–130. doi:10.​1007/​BF01182543 CrossRef
    Brown DC (1966) Decentering distortion of lenses. Photogramm Eng 32:444–462
    Buzzi O, Giacomini A, Spadari M (2012) Laboratory investigation on high values of restitution coefficients. Rock Mech Rock Eng 45:35–43. doi:10.​1007/​s00603-011-0183-0 CrossRef
    Challis JH (1995) A procedure for determining rigid body transformation parameters. J Biomech 28:733–737. doi:10.​1016/​0021-9290(94)00116-L CrossRef
    Chau KT, Wong RHC, Wu JJ (2002) Coefficient of restitution and rotational motions of rockfall impacts. Int J Rock Mech Min Sci 39:69–77. doi:10.​1016/​S1365-1609(02)00016-3 CrossRef
    Crosta GB, Agliardi F (2004) Parametric evaluation of 3D dispersion of rockfall trajectories. Nat Hazards Earth Syst Sci 4:583–598. doi:10.​5194/​nhess-4-583-2004 CrossRef
    Dorren LKA, Berger F, le Hir C, Mermin E, Tardif P (2005) Mechanisms, effects and management implications of rockfall in forests. For Ecol Manag 215:183–195. doi:10.​1016/​j.​foreco.​2005.​05.​012 CrossRef
    Dorren LKA, Berger F, Putters US (2006) Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes. Nat Hazards Earth Syst Sci 6:145–153. doi:10.​5194/​nhess-6-145-2006 CrossRef
    Ferrari F, Giani GP, Apuani T (2013) Why can rockfall normal restitution coefficient be higher than one? Rendiconti Online Societa Geologica Italiana 24:122–124
    Giacomini A, Thoeni K, Lambert C, Booth S, Sloan SW (2012) Experimental study on rockfall drapery systems for open pit highwalls. Int J Rock Mech Min Sci 56:171–181. doi:10.​1016/​j.​ijrmms.​2012.​07.​030
    Giani GP (1992) Rock slope stability analysis. Balkema, Rotterdam
    Glover J, Denk M, Bourrier F, Volkwein A, Gerber W (2012) Measuring the kinetic energy dissipation effects of rock fall attenuating systems with video analysis. 12th Congress INTERPRAEVENT 1:151–160
    Heidenreich B (2004) Small- and half-scale experimental studies of rockfall impacts on sandy slopes. Dissertation, EPFL
    Klette J, Volkwein A (2013) Semi-automatic determination of rockfall trajectories. Geophys Res Abstr 15:EGU2013-717-1
    Labiouse V, Heidenreich B (2009) Half-scale experimental study of rockfall impacts on sandy slopes. Nat Hazards Earth Syst Sci 9:1981–1993CrossRef
    Paronuzzi P (2009) Field evidence and kinematical back-analysis of block rebounds: the lavone rockfall, Northern Italy. Rock Mech Rock Eng 42:783–813. doi:10.​1007/​s00603-008-0021-1 CrossRef
    Richards LR, Peng B, Bell DH (2001) Laboratory and field evaluation of the normal coefficient of restitution for rocks. In: Proceedings of ISRM regional symposium EUROCK2001, pp 149–155
    Spadari M, Giacomini A, Buzzi O, Fityus S, Giani GP (2012) In situ rockfall testing in New South Wales, Australia. Int J Rock Mech Min Sci 49:84–93. doi:10.​1016/​j.​ijrmms.​2011.​11.​013 CrossRef
    Ulusay R, Hudson JA; IARM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. International Society for Rock Mechanics, Commission on Testing Methods, Ankara, Turkey
    Vijayakumar S, Yacoub T, Ranjram M, Curran JH (2012) Effect of rockfall shape on normal coefficient of restitution. In: 46th US rock mechanics/geomechanics symposium, Chicago
    Wu S-S (1985) Rockfall evaluation by computer simulation. Transportation Research Board
  • 作者单位:Pavlos Asteriou (1)
    George Tsiambaos (1)

    1. Department of Geotechnical Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780, Athens, Greece
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Civil Engineering
  • 出版者:Springer Wien
  • ISSN:1434-453X
文摘
A methodology for the experimental investigation of rockfall in three-dimensional space is presented in this paper, aiming to assist on-going research of the complexity of a block’s response to impact during a rockfall. An extended laboratory investigation was conducted, consisting of 590 tests with cubical and spherical blocks made of an artificial material. The effects of shape, slope angle and the deviation of the post-impact trajectory are examined as a function of the pre-impact trajectory direction. Additionally, an empirical model is proposed that estimates the deviation of the post-impact trajectory as a function of the pre-impact trajectory with respect to the slope surface and the slope angle. This empirical model is validated by 192 small-scale field tests, which are also presented in this paper. Some important aspects of the three-dimensional nature of rockfall phenomena are highlighted that have been hitherto neglected. The 3D space data provided in this study are suitable for the calibration and verification of rockfall analysis software that has become increasingly popular in design practice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700