Emerging Brain Morphologies from Axonal Elongation
详细信息    查看全文
  • 作者:Maria A. Holland ; Kyle E. Miller ; Ellen Kuhl
  • 关键词:Neuromechanics ; Brain development ; Cortical folding ; Mechanotransduction ; Growth ; Symmetry breaking
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:43
  • 期:7
  • 页码:1640-1653
  • 全文大小:3,974 KB
  • 参考文献:1.Abaqus 6.12. Analysis User’s Manual, 2012. SIMULIA. Dassault Systèmes.
    2.Ambrosi, D., G. A. Ateshian, E. M. Arruda, S. C. Cowin, J. Dumais, A. Goriely, G. A. Holzapfel, J. D. Humphrey, R. Kemker, E. Kuhl, J. E. Olberding, L. A. Taber, and K. Garikipati. Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59:863-83, 2011.PubMed Central PubMed View Article
    3.Bardin, J. Neuroscience: making connections. Nature 483:394-96, 2012.PubMed View Article
    4.Barron, D. An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. J. Exp. Zool. 113:553581, 1950.View Article
    5.Bayly, P. V., R. J. Okamoto, G. Xu, Y. Shi, Y., and L. A. Taber. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10:16005, 2013.View Article
    6.Bayly, P. V., L. A. Taber, and C. D. Kroenke. Mechanical forces in cerebral cortical folding: a review of measurements and models.J. Mech. Behav. Biomed. Mater. 29:568-81, 2014.PubMed View Article
    7.Biot, M. A. Folding instability of a layered viscoelastic medium under compression. Proc. R. Soc. Lond. A 242:444-54, 1957.View Article
    8.Bray, D. Axonal growth in response to experimentally applied mechanical tension. Dev. Biol. 102:379-89, 1984.PubMed View Article
    9.Budday, S., E. Kuhl, and J. W. Hutchinson. Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. 2015. doi:10.-080/-4786435.-015.-014443 .
    10.Budday, S., R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. C. Ovaert, and E. Kuhl. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 2015. doi:10.-016/?j.?jmbbm.-015.-2.-24 .PubMed
    11.Budday, S., C. Raybaud, and E. Kuhl. A mechanical model predicts morphological abnormalities in the developing human brain. Sci. Rep. 4:5644, 2014.PubMed Central PubMed View Article
    12.Budday, S., P. Steinmann, and E. Kuhl. The role of mechanics during brain development. J. Mech. Phys. Solids. 72:75-2, 2014.PubMed View Article
    13.Cao, Y. and J. W. Hutchinson. Wrinkling phenomena in neo-Hookean film/substrate bilayers. J. Appl. Mech. 79:031019, 2012View Article
    14.Dennerll, T. J., P. Lamoureux, R. E. Buxbaum, and S. R. Heidemann. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109:3073-083, 1989.PubMed View Article
    15.Feng, Y., E. H. Clayton, Y Chang, R. J. Okamoto, P. V. Bayly. Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography. J. Biomech. 46:863-70, 2013.PubMed Central PubMed View Article
    16.Feng, Y., R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23:117-32, 2013.PubMed Central PubMed View Article
    17.Fishman, I., C. L. Keown, A. J. Lincoln, J. A. Pineda, and R. A. Müller. Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA Psychiatry 71:751-60, 2014.PubMed Central PubMed View Article
    18.Franceschini, G., D. Bigoni, P. Regitnig, and G. A. Holzapfel. Brain tissue deforms similar to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54:2592-620, 2006.View Article
    19.Franze, K. The mechanical control of nervous system development. Development 140:3069-077, 2013.PubMed View Article
    20.Franze, K., P. A. Janmey, and J. Guck. Mechanics in neuronal development and repair. Ann. Rev. Biomed. Eng. 15:227-51, 2013.View Article
    21.Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface. 3:15-5, 2006.PubMed Central PubMed View Article
    22.G?ktepe, S., O. J. Abilez, and E. Kuhl. A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J. Mech. Phys. Solids 58:1661-680, 2010.View Article
    23.Goldmann-Rakic, P. S. Development of cortical circuitry and cognitive function. Child Dev. 58:601-22, 1987.View Article
    24.Goriely, A., M. G. D. Geers, G. A. Holzapfel, J. Jayamohan, A. Jerusalem, S. Sivaloganathan, W. Squier, J. A.W. van Dommelen, S. Waters, and E. Kuhl. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 2015. doi:10.-007/?s10237-015-0662-4 .
    25.Hardan, A. Y., R. J. Jou, M. S. Keshavan, R. Varma, and N. J. Minshew. Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res. 131:263-68, 2004.PubMed View Article
    26.Himpel, G., A. Menzel, E. Kuhl, and P. Steinmann. Time-dependent fiber reorientation of transversely isotropic continua—finite element formulation and consistent linearization. Int. J. Numer. Me
  • 作者单位:Maria A. Holland (1)
    Kyle E. Miller (2)
    Ellen Kuhl (3)

    1. Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
    2. Department of Zoology, Michigan State University, East Lansing, MI, 48824, USA
    3. Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
Understanding the characteristic morphology of our brain remains a challenging, yet important task in human evolution, developmental biology, and neurosciences. Mathematical modeling shapes our understanding of cortical folding and provides functional relations between cortical wavelength, thickness, and stiffness. Yet, current mathematical models are phenomenologically isotropic and typically predict non-physiological, periodic folding patterns. Here we establish a mechanistic model for cortical folding, in which macroscopic changes in white matter volume are a natural consequence of microscopic axonal growth. To calibrate our model, we consult axon elongation experiments in chick sensory neurons. We demonstrate that a single parameter, the axonal growth rate, explains a wide variety of in vitro conditions including immediate axonal thinning and gradual thickness restoration. We embed our axonal growth model into a continuum model for brain development using axonal orientation distributions motivated by diffusion spectrum imaging. Our simulations suggest that white matter anisotropy—as an emergent property from directional axonal growth—intrinsically induces symmetry breaking, and predicts more physiological, less regular morphologies with regionally varying gyral wavelengths and sulcal depths. Mechanistic modeling of brain development could establish valuable relationships between brain connectivity, brain anatomy, and brain function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700