Caloric restriction diminishes the pressor response to static exercise
详细信息    查看全文
  • 作者:John P. Florian ; Friedhelm J. Baisch ; Martina Heer…
  • 关键词:Caloric restriction ; Bed rest ; Cold pressor ; Static exercise ; Sympathetic nerve activity ; Spaceflight
  • 刊名:Extreme Physiology & Medicine
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:5
  • 期:1
  • 全文大小:1,298 KB
  • 参考文献:1.Levine BD, Lane LD, Watenpaugh DE, Gaffney FA, Buckey JC, Blomqvist CG. Maximal exercise performance after adaptation to microgravity. J Appl Physiol. 1996;81(2):686–94.PubMed
    2.Spaak J, Sundblad P, Linnarsson D. Impaired pressor response after spaceflight and bed rest: evidence for cardiovascular dysfunction. Eur J Appl Physiol. 2001;85(1–2):49–55.PubMed CrossRef
    3.Trappe T, Trappe S, Lee G, Widrick J, Fitts R, Costill D. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol. 2006;100(3):951–7.PubMed CrossRef
    4.Kamiya A, Iwase S, Michikamia D, Fua Q, Mano T. Muscle sympathetic nerve activity during handgrip and post-handgrip muscle ischemia after exposure to simulated microgravity in humans. Neurosci Lett. 2000;280(1):49–52.PubMed CrossRef
    5.Kamiya A, Michikami D, Shiozawa T, Iwase S, Hayano J, Kawada T, et al. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans. Am J Physiol Regul Integr Comp Physiol. 2004;286(5):R844–50.PubMed CrossRef
    6.Pagani M, Iellamo F, Lucini D, Cerchiello M, Castrucci F, Pizzinelli P, et al. Selective impairment of excitatory pressor responses after prolonged simulated microgravity in humans. Auton Neurosci. 2001;91(1–2):85–95.PubMed CrossRef
    7.Shykoff BE, Farhi LE, Olszowka AJ, Pendergast DR, Rokitka MA, Eisenhardt CG, et al. Cardiovascular response to submaximal exercise in sustained microgravity. J Appl Physiol. 1996;81(1):26–32.PubMed
    8.Convertino VA, Ludwig DA, Gray BD, Vernikos J. Effects of exposure to simulated microgravity on neuronal catecholamine release and blood pressure responses to norepinephrine and angiotensin. Clin Auton Res. 1998;8(2):101–10.PubMed CrossRef
    9.Fu Q, Levine BD, Pawelczyk JA, Ertl AC, Diedrich A, Cox JF, et al. Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight. J Physiol. 2002;544(Pt 2):653–64.PubMed PubMedCentral CrossRef
    10.Seals DR, Victor RG. Regulation of muscle sympathetic nerve activity during exercise in humans. Exerc Sport Sci Rev. 1991;19:313–49.PubMed CrossRef
    11.Rowell LB, O’Leary DS. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol. 1990;69(2):407–18.PubMed
    12.Yamamoto K, Iwase S, Mano T. Responses of muscle sympathetic nerve activity and cardiac output to the cold pressor test. Jpn J Physiol. 1992;42:239–52.PubMed CrossRef
    13.Stein TP, Leskiw MJ, Schluter MD, Hoyt RW, Lane HW, Gretebeck RE, et al. Energy expenditure and balance during spaceflight on the space shuttle. Am J Physiol. 1999;276(6 Pt 2):R1739–48.PubMed
    14.Grassi G, Seravalle G, Colombo M, Bolla G, Cattaneo BM, Cavagnini F, et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation. 1998;97(20):2037–42.PubMed CrossRef
    15.Williams TD, Chambers JB, Henderson RP, Rashotte ME, Overton JM. Cardiovascular responses to caloric restriction and thermoneutrality in C57BL/6 J mice. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1459–67.PubMed CrossRef
    16.Young JB, Landsberg L. Suppression of sympathetic nervous system during fasting. Science. 1977;196(4297):1473–5.PubMed CrossRef
    17.Florian JP, Baisch FJ, Heer M, Pawelczyk JA. Caloric restriction decreases orthostatic tolerance independently from 6° head-down bedrest. PLoS One. 2015;10(4):1–13.CrossRef
    18.Nixon JV, Murray RG, Bryant C, Johnson RL Jr, Mitchell JH, Holland OB, et al. Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol. 1979;46(3):541–8.PubMed
    19.Lin PH, Proschan MA, Bray GA, Fernandez CP, Hoben K, Most-Windhauser M, et al. Estimation of energy requirements in a controlled feeding trial. Am J Clin Nutr. 2003;77(3):639–45.PubMed
    20.Yates AA, Schlicker SA, Suitor CW. Dietary Reference Intakes: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J Am Diet Assoc. 1998;98(6):699–706.PubMed CrossRef
    21.Biolo G, Ciocchi B, Stulle M, Bosnutti A, Barazzoni R, Zanetti M, et al. Calorie restriction accelerates the catabolism of lean body mass during 2 week of bed rest. Am J Clin Nutr. 2007;86(2):366–72.PubMed
    22.Wallin BG, Eckberg DL. Sympathetic transients caused by abrupt alterations of carotid baroreceptor activity in humans. Am J Physiol. 1982;242(2):H185–90.PubMed
    23.Haruna Y, Suzuki Y, Kawakubo K, Gunji A. Orthostatic tolerance and autonomous nervous functions before and after 20-days bed rest. Acta Physiol Scand Suppl. 1994;616:71–81.PubMed
    24.Straznicky NE, Louis WJ, McGrade P, Howes LG. The effects of dietary lipid modification on blood pressure, cardiovascular reactivity and sympathetic activity in man. J Hypertens. 1993;11(4):427–37.PubMed CrossRef
    25.Victor RG, Leimbach WN, Seals DR, Wallin BG, Mark AL. Effects of the cold pressor test on muscle sympathetic nerve activity in humans. Hypertension. 1987;9:429–36.PubMed CrossRef
    26.Mager DE, Wan R, Brown M, Cheng A, Wareski P, Abernethy DR, et al. Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J. 2006;20(6):631–7.PubMed CrossRef
    27.Bigard AX, Boussif M, Chalabi H, Guezennec CY. Alterations in muscular performance and orthostatic tolerance during Ramadan. Aviat Space Environ Med. 1998;69(4):341–6.PubMed
    28.Goodwin GM, McCloskey DI, Mitchell JH. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol. 1972;226(1):173–90.PubMed PubMedCentral CrossRef
    29.Williamson JW, Fadel PJ, Mitchell JH. New insights into central cardiovascular control during exercise in humans: a central command update. Exp Physiol. 2006;91:51–8.PubMed CrossRef
    30.Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29(4):261–8.PubMed CrossRef
    31.Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosci. 2005;8(5):579–84.PubMed CrossRef
    32.Wade GN, Jones JE. Neuroendocrinology of nutritional infertility. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1277–96.PubMed CrossRef
    33.McCloskey DI, Mitchell JH. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol. 1972;224(1):173–86.PubMed PubMedCentral CrossRef
    34.Gladwell VF, Coote JH. Heart rate at the onset of muscle contraction and during passive muscle stretch in humans: a role for mechanoreceptors. J Physiol. 2002;540(Pt 3):1095–102.PubMed PubMedCentral CrossRef
    35.McClain J, Hardy C, Enders B, Smith M, Sinoway L. Limb congestion and sympathoexcitation during exercise. Implications for congestive heart failure. J Clin Invest. 1993;92(5):2353–9.PubMed PubMedCentral CrossRef
    36.McClain J, Hardy JC, Sinoway LI. Forearm compression during exercise increases sympathetic nerve traffic. J Appl Physiol. 1994;77(6):2612–7.PubMed
    37.Fisher JP, White MJ. Muscle afferent contributions to the cardiovascular response to isometric exercise. Exp Physiol. 2004;89(6):639–46.PubMed CrossRef
    38.Pawelczyk JA, Zuckerman JH, Blomqvist CG, Levine BD. Regulation of muscle sympathetic nerve activity after bed rest deconditioning. Am J Physiol Heart Circ Physiol. 2001;280(5):H2230–9.PubMed
    39.Zorbas YG, Yarullin VL, Denogratov SD, Luzhkov YS, Kuznetsov NA. Fluid volume compartments and biochemical measurements for disclosing fluid depletion during acute and rigorous bed rest in normal subjects. Int Urol Nephrol. 2002;34(4):467–76.PubMed CrossRef
    40.Florian JP, Simmons EE, Chon KH, Faes L, Shykoff BE. Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion. J Appl Physiol. 2013;115(9):1275–89.PubMed CrossRef
    41.Hesse C, Siedler H, Luntz SP, Arendt BM, Goerlich R, Fricker R, et al. Modulation of endothelial and smooth muscle function by bed rest and hypoenergetic, low-fat nutrition. J Appl Physiol. 2005;99(6):2196–203.PubMed CrossRef
    42.Levine BD, Pawelczyk JA, Ertl AC, Cox JF, Zuckerman JH, Diedrich A, et al. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight. J Physiol. 2002;538:331–40.PubMed PubMedCentral CrossRef
  • 作者单位:John P. Florian (1)
    Friedhelm J. Baisch (2)
    Martina Heer (2)
    James A. Pawelczyk (3)

    1. Navy Experimental Diving Unit, 321 Bullfinch Rd., Panama City, FL, 32407, USA
    2. DLR-Institute of Aerospace Medicine, Cologne, Germany
    3. Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
  • 刊物主题:Human Physiology; Emergency Medicine; Intensive / Critical Care Medicine; Cardiology; Pneumology/Respiratory System; Sports Medicine;
  • 出版者:BioMed Central
  • ISSN:2046-7648
文摘
Background Astronauts in space consume fewer calories and return to earth predisposed to orthostatic intolerance. The role that caloric deficit plays in the modulation of autonomic control of the cardiovascular system is unknown. Therefore, the purpose of this study was to determine the effects of 6° head-down bedrest (an analog of spaceflight) with a hypocaloric diet (25 % caloric restriction) (CR) on autonomic neural control during static handgrip (HG) and cold pressor (CP) tests. Nine healthy young men participated in a randomized crossover bedrest (BR) study, consisting of four, two-week interventions (hypocaloric ambulatory, hypocaloric bedrest, normocaloric ambulatory, and normocaloric bedrest), each separated by 5 months. Heart rate (HR), arterial pressure, and muscle sympathetic nerve activity (MSNA) were recorded before, during, and after HG (40 % of maximum voluntary contraction to fatigue), post-exercise muscle ischemia (forearm occlusion), and CP. Bedrest and nutritional combinations were compared using two-way ANOVA with repeated measures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700