Cargo trafficking in Alzheimer's disease: the possible role of retromer
详细信息    查看全文
  • 作者:Saeed Sadigh-Eteghad ; Mohammad Sadegh Askari-Nejad ; Javad Mahmoudi…
  • 关键词:Cargo trafficking ; Alzheimer’s disease ; Retromer ; Wnt signaling ; APP processing ; Synaptic plasticity
  • 刊名:Neurological Sciences
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:37
  • 期:1
  • 页码:17-22
  • 全文大小:600 KB
  • 参考文献:1.Sadigh-Eteghad S, Majdi A, Farhoudi M, Talebi M, Mahmoudi J (2014) Different patterns of brain activation in normal aging and Alzheimer’s disease from cognitional sight: meta analysis using activation likelihood estimation. J Neurol Sci 343(1–2):159–166. doi:10.​1016/​j.​jns.​2014.​05.​066 PubMed CrossRef
    2.Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191. doi:10.​1016/​j.​jalz.​2007.​04.​381 PubMed CrossRef
    3.Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation. Proc Natl Acad Sci 105(20):7327–7332PubMed PubMedCentral CrossRef
    4.Bonifacino JS, Hurley JH (2008) Retromer. Curr Opin Cell Biol 20(4):427–436PubMed PubMedCentral CrossRef
    5.Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123–133PubMed PubMedCentral CrossRef
    6.Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE, Wells JM, Morin PJ (2011) Retromer disruption promotes amyloidogenic APP processing. Neurobiol Dis 43(2):338–345PubMed PubMedCentral CrossRef
    7.Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J (2015) Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract 24(1):1–10. doi:10.​1159/​000369101 PubMed CrossRef
    8.Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6):1055–1058PubMed CrossRef
    9.Pastorino L, Sun A, Lu P-J, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li S-H, Li X (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440(7083):528–534PubMed CrossRef
    10.Wilhelmus M, Otte-Höller I, Wesseling P, De Waal R, Boelens W, Verbeek M (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32(2):119–130PubMed CrossRef
    11.Eaton S (2008) Retromer retrieves wntless. Dev Cell 14(1):4–6PubMed CrossRef
    12.Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4(9):a007864PubMed PubMedCentral CrossRef
    13.Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418PubMed PubMedCentral CrossRef
    14.Cerpa W, Godoy JA, Alfaro I, Farías GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283(9):5918–5927PubMed CrossRef
    15.Fjorback AW, Seaman M, Gustafsen C, Mehmedbasic A, Gokool S, Wu C, Militz D, Schmidt V, Madsen P, Nyengaard JR (2012) Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci 32(4):1467–1480PubMed CrossRef
    16.Small SA, Petsko GA (2015) Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci 16:126–132PubMed CrossRef
    17.Seaman MN (2005) Recycle your receptors with retromer. Trends Cell Biol 15(2):68–75PubMed CrossRef
    18.Norwood SJ, Shaw DJ, Cowieson NP, Owen DJ, Teasdale RD, Collins BM (2011) Assembly and solution structure of the core retromer protein complex. Traffic 12(1):56–71PubMed CrossRef
    19.Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120(1):45–54PubMed CrossRef
    20.Rojas R, Kametaka S, Haft CR, Bonifacino JS (2007) Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 27(3):1112–1124PubMed PubMedCentral CrossRef
    21.Collins BM (2008) The structure and function of the retromer protein complex. Traffic 9(11):1811–1822PubMed CrossRef
    22.Small SA, Gandy S (2006) Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis. Neuron 52(1):15–31PubMed CrossRef
    23.Wen L, Tang F-L, Hong Y, Luo S-W, Wang C-L, He W, Shen C, Jung J-U, Xiong F, D-h Lee (2011) VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology. J Cell Biol 195(5):765–779PubMed PubMedCentral CrossRef
    24.Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58(6):909–919PubMed CrossRef
    25.Munsie L, Milnerwood A, Seibler P, Beccano-Kelly D, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao L, Tapia L (2015) Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson’s disease VPS35 mutation p. D620N. Hum Mol Genet 24(6):1691–1703PubMed CrossRef
    26.Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791PubMed CrossRef
    27.Seaman MN (2012) The retromer complex—endosomal protein recycling and beyond. J Cell Sci 125(20):4693–4702PubMed PubMedCentral CrossRef
    28.Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27):7212–7221PubMed CrossRef
    29.Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736PubMed CrossRef
    30.Bhalla A, Vetanovetz CP, Morel E, Chamoun Z, Di Paolo G, Small SA (2012) The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol Dis 47(1):126–134PubMed PubMedCentral CrossRef
    31.Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 17(1):110–122PubMed PubMedCentral CrossRef
    32.Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat Neurosci 4(3):233–234PubMed CrossRef
    33.Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248(4959):1122–1124PubMed CrossRef
    34.Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology 66(1 suppl 1):S69–S73PubMed CrossRef
    35.Zheng L, Cedazo-Minguez A, Hallbeck M, Jerhammar F, Marcusson J, Terman A (2012) Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. Transl Neurodegener 1(19):10.1186
    36.Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615–29619PubMed PubMedCentral CrossRef
    37.Choy RW-Y, Cheng Z, Schekman R (2012) Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc Natl Acad Sci 109(30):E2077–E2082PubMed PubMedCentral CrossRef
    38.Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee J-M (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci 106(48):20324–20329PubMed PubMedCentral CrossRef
    39.Nunan J, Shearman MS, Checler F, Cappai R, Evin G, Beyreuther K, Masters CL, Small DH (2001) The C-terminal fragment of the Alzheimer’s disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from γ-secretase. Eur J Biochem 268(20):5329–5336PubMed CrossRef
    40.Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMed CrossRef
    41.Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim T-W (2010) Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 24(8):2783–2794PubMed PubMedCentral CrossRef
    42.Wang C-L, Tang F-L, Peng Y, Shen C-Y, Mei L, Xiong W-C (2012) VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1. Biol Open 1(12):1248–1257PubMed PubMedCentral CrossRef
    43.Small SA (2008) Retromer sorting: a pathogenic pathway in late-onset Alzheimer disease. Arch Neurol 65(3):323–328PubMed PubMedCentral CrossRef
    44.Seaman MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165(1):111–122PubMed PubMedCentral CrossRef
    45.Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39(2):168–177PubMed PubMedCentral CrossRef
    46.Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J (2012) Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer’s disease. EMBO J 31(1):187–200PubMed PubMedCentral CrossRef
    47.Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, Von Arnim CA, Breiderhoff T, Jansen P, Wu X (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA 102(38):13461–13466PubMed PubMedCentral CrossRef
    48.Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ (2006) The lipoprotein receptor LR11 regulates amyloid β production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 26(5):1596–1603PubMed PubMedCentral CrossRef
    49.De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Rev 33(1):1–12PubMed CrossRef
    50.Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125(3):509–522PubMed CrossRef
    51.Lorenowicz MJ, Korswagen HC (2009) Sailing with the Wnt: charting the Wnt processing and secretion route. Exp Cell Res 315(16):2683–2689PubMed CrossRef
    52.Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X (2008) The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 14(1):120–131PubMed CrossRef
    53.Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JR, van Heesbeen RG, Middelkoop TC, Basler K (2011) A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 13(8):914–923PubMed PubMedCentral CrossRef
    54.Maurice MM, Korswagen HC (2014) Wnt Signaling in development and disease: molecular mechanisms and biological functions. In: Hoppler SP, Moon RT (eds) Wnt Signal Production, Secretion, and Diffusion. Wiley, New York, pp 3–14
    55.Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice MM, Vincent J-P (2008) Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol 10(2):170–177PubMed CrossRef
    56.Jackson GR, Wiedau-Pazos M, Sang T-K, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4):509–519PubMed CrossRef
    57.Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205. doi:10.​1016/​j.​cell.​2012.​05.​012 PubMed CrossRef
    58.Boonen RA, van Tijn P, Zivkovic D (2009) Wnt signaling in Alzheimer’s disease: up or down, that is the question. Ageing Res Rev 8(2):71–82PubMed CrossRef
    59.Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, Wang XC, Chen XQ, Yang Y, Zhang JY, Wang Q, Xu H, Liao FF, Wang JZ (2007) Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci USA 104(9):3591–3596. doi:10.​1073/​pnas.​0609303104 PubMed PubMedCentral CrossRef
    60.Caricasole A, Copani A, Caruso A, Caraci F, Iacovelli L, Sortino MA, Terstappen GC, Nicoletti F (2003) The Wnt pathway, cell-cycle activation and β-amyloid: novel therapeutic strategies in Alzheimer’s disease? Trends Pharmacol Sci 24(5):233–238PubMed CrossRef
    61.Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM, Gouras GK (2005) Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 20(2):187–198. doi:10.​1016/​j.​nbd.​2005.​02.​008 PubMed CrossRef
    62.Choy RW-Y, Park M, Temkin P, Herring BE, Marley A, Nicoll RA, von Zastrow M (2014) Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82(1):55–62PubMed PubMedCentral CrossRef
    63.Zhang D, Isack NR, Glodowski DR, Liu J, Chen CC-H, Xu XS, Grant BD, Rongo C (2012) RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. J Cell Biol 196(1):85–101PubMed PubMedCentral CrossRef
    64.Munsie L, Milnerwood A, Seibler P, Beccano-Kelly D, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao L, Tapia L (2014) Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson’s disease VPS35 mutation p. D620N. Hum Mol Genet:ddu582
    65.Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13(5):1031–1037PubMed CrossRef
    66.Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25(1):103–126PubMed CrossRef
    67.Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE (2004) Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24(45):10191–10200PubMed CrossRef
    68.Lane RF, St George-Hyslop P, Hempstead BL, Small SA, Strittmatter SM, Gandy S (2012) Vps10 family proteins and the retromer complex in aging-related neurodegeneration and diabetes. J Neurosci 32(41):14080–14086PubMed PubMedCentral CrossRef
    69.Chen Y, Durakoglugil MS, Xian X, Herz J (2010) ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci 107(26):12011–12016PubMed PubMedCentral CrossRef
    70.Weeber EJ, Beffert U, Jones C, Christian JM, Förster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277(42):39944–39952PubMed CrossRef
    71.Vardarajan BN, Bruesegem SY, Harbour ME, Inzelberg R, Friedland R, St George-Hyslop P, Seaman MN, Farrer LA (2012) Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging 33(9):2231 e2215–2231 e2230. doi:10.​1016/​j.​neurobiolaging.​2012.​04.​020 CrossRef
    72.Lucin KM, O’Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ, Mastroeni DF, Rogers J, Spencer B, Masliah E, Wyss-Coray T (2013) Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 79(5):873–886. doi:10.​1016/​j.​neuron.​2013.​06.​046 PubMed PubMedCentral CrossRef
    73.Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA (2008) Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci USA 105(20):7327–7332. doi:10.​1073/​pnas.​0802545105 PubMed PubMedCentral CrossRef
    74.Small SA, Petsko GA (2015) Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci 16(3):126–132. doi:10.​1038/​nrn3896 PubMed CrossRef
    75.Mecozzi VJ, Berman DE, Simoes S, Vetanovetz C, Awal MR, Patel VM, Schneider RT, Petsko GA, Ringe D, Small SA (2014) Pharmacological chaperones stabilize retromer to limit APP processing. Nat Chem Biol 10(6):443–449. doi:10.​1038/​nchembio.​1508 PubMed PubMedCentral CrossRef
  • 作者单位:Saeed Sadigh-Eteghad (1)
    Mohammad Sadegh Askari-Nejad (1)
    Javad Mahmoudi (1)
    Alireza Majdi (1)

    1. Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Neurology
    Neuroradiology
    Neurosurgery
    Psychiatry
  • 出版者:Springer Milan
  • ISSN:1590-3478
文摘
Alzheimer’s disease (AD) as one of the ongoing neurological disorders is initiated and progressed by multiple pathological pathways. Cargoes trafficking pathways, such as recycling, play a crucial role in the pathogenesis of AD. One of the major constituents of this trafficking system in neurons is retromer which acts in endosomal sorting machinery. Defective retromer disrupts recycling of cargoes from endosomes to Golgi and leads to its mis-trafficking which may subsequently leads to AD. Also, retromer-related cargo trafficking could trigger amyloidogenic pathway and beta-amyloid production. Wingless is another cargo in Wnt pathways and its trafficking is mediated by retromer. Retromer malfunction leads to lack of Wnt and subsequent AD-related pathogenesis. Also, retromer plays role in synaptic receptor trafficking in physiologic and pathologic conditions. This review is brief survey on the recent published literatures about pathogenesis of retromer-related trafficking in amyloid precursor protein pathways, Wnt signaling, synaptic function, and also revised the structural role of retromer in AD progression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700