Finite element investigation of inertia and viscous effects on regularized Herschel–Bulkley flows
详细信息    查看全文
  • 作者:Sérgio Frey ; Fernanda B. Link…
  • 关键词:Yield stress ; Herschel–Bulkley model ; Papanastasiou model ; Multi ; field GLS ; type method
  • 刊名:Journal of the Brazilian Society of Mechanical Sciences and Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:38
  • 期:4
  • 页码:1291-1298
  • 全文大小:927 KB
  • 参考文献:1.Abdali SS, Mitsoulis E, Markatos NC (1992) Entry and exit flows of Bingham fluids. J Rheol 36:389–497CrossRef
    2.Alexandrou AN, McGilvreay TM, Burgos G (2001) Steady Herschel–Bulkley fluid in three-dimensional expansions. J Non Newton Fluid Mech 100:77–96CrossRef MATH
    3.Ancey C, Cochard S (2009) The dam
    eak problem for Herschel–Bulkley viscoplastic fluids down steep flumes. J Non Newton Fluid Mech 158:18–35CrossRef MATH
    4.Balmforth NJ, Forterre Y, Pouliquen O (2009) The viscoplastic Stokes layer. J Non Newton Fluid Mech 158:46–53CrossRef MATH
    5.Barnes HA (1999) A brief history of the yield stress. Appl Rheol 9:262266
    6.Barnes HA (1999) The yield stress—a review or ’\(\pi \alpha \ni \tau \alpha \rho \epsilon\) ’—everything flows? J Non Newton Fluid Mech 81:133178CrossRef
    7.Behr AM, Franca LP, Tezduyar TE (1993) Stabilized finite element methods for the velocity–pressure-stress formulation of incompressible flows. Comput Methods Appl Mech Eng 104:31–48MathSciNet CrossRef MATH
    8.Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1. John Wiley & Sons Inc., USA
    9.Brooks AN, Hughes TJR (1982) Streamline Upwind/Petrov-Galerkin Formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNet CrossRef MATH
    10.Burgos GR, Alexandrou AN (1999) Flow development of Herschel–Bulkley fluids in a sudden three-dimensional square expansion. J Rheol 43:485498
    11.Burgos GR, Alexandrou AN, Entov V (1999) On the determination of yield surfaces in Herschel-fluids. J Rheol 43(3):463–483CrossRef
    12.Dean EJ, Glowinski R, Guidoboni G (2007) On the numerical simulation of Bingham visco-plastic flow: old and new results. J Non Newton Fluid Mech 142(1–3):36–62CrossRef MATH
    13.De Besses DD, Magnin A, Jay P (2003) Viscoplastic flow around a cylinder in an infinite medium. J Non Newton Fluid Mech 115:2749MATH
    14.De Souza Mendes PR, Dutra ESS (2004) Viscosity function for yield-stress liquids. Appl Rheol 14:296–302
    15.De Souza Mendes PR, Naccache MF, Varges PR, Marchesini FH (2007) Flow of viscoplastic liquids through axisymmetric expansions-contractions. J Non Newton Fluid Mech 142(1–3):207–217CrossRef MATH
    16.Dos Santos DD, Frey S, Naccache MF, de Souza Mendes PR (2011) Numerical approximations for flow of viscoplastic fluids in a lid-driven cavity. J Non Newton Fluid Mech 166:667–679CrossRef MATH
    17.Franca LP, Frey S (1992) Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 99:209–233MathSciNet CrossRef MATH
    18.Jay P, Magnin A, Piau JM (2001) Viscoplastic fluid flow through a sudden axisymmetric expansion. AICHE J 47(10):2155–2166CrossRef
    19.Liu BT, Muller SJ, Denn MM (2002) Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J Non Newton Fluid Mech 102:179191CrossRef MATH
    20.Mitsoulis E, Huilgol RR (2004) Entry flows of Bingham plastics in expansions. J Non Newton Fluid Mech 122:45–54CrossRef MATH
    21.Mitsoulis E (2008) Numerical simulation of calendering viscoplastic fluids. J Non Newton Fluid Mech 154:77–88CrossRef MATH
    22.Mitsoulis E, Matsoukas A (2005) Free surface effects in squeeze flow of Bingham plastics. J Non Newton Fluid Mech 129:182187CrossRef MATH
    23.Naccache MF, Barbosa RS (2007) Creeping flow of viscoplastic materials through a planar expansion followed by a contraction. Mech Res Commun 34:423–431CrossRef MATH
    24.Neofytou P, Drikakis D (2003) Non-Newtonian flow instability in a channel with a sudden expansion. J Non Newton Fluid Mech 111:127–150CrossRef MATH
    25.Neofytou P (2006) Transition to asymmetry of generalised Newtonian fluid through a symmetric sudden expansion. J Non Newton Fluid Mech 133:132–140CrossRef MATH
    26.Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31(5):385–404CrossRef MATH
    27.Pascal J, Magnin A, Piau JM (2001) Viscoplastic fluid flow through a sudden axisymmetric expansion. AIChE J 47(10):2155–2166CrossRef
    28.Pinho F, Graham M (2015) Virtual special issue: yield-stress fluid flows. J Non Newton Fluid Mech (online)
    29.Zhu H, Kim YD, De Kee D (2005) Non-Newtonian fluids with a yield stress. J Non Newton Fluid Mech 129:177–181CrossRef MATH
  • 作者单位:Sérgio Frey (1) (2)
    Fernanda B. Link (3) (4)
    Mônica F. Naccache (5)
    Cleiton Fonseca (6)

    1. Department of Mechanical Engineering, Federal University of Rio Grande do Sul, Rua Sarmento Leite 425, Porto Alegre, RS, 90050-170, Brazil
    2. Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
    3. Department of Civil Engineering, FTEC Faculties, Avenida Assis Brasil 7765, Porto Alegre, RS, 90030-030, Brazil
    4. Collaborative Researcher of Laboratory of Computational and Applied Fluid Mechanics, UFRGS, Rua Sarmento Leite 425, Porto Alegre, RS, 90050-170, Brazil
    5. Department of Mechanical Engineering, Pontifícia Universidade Católica-RJ, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ, 22453-900, Brazil
    6. Department of Engineering and Computer Science, University Regional Integrated High Uruguay and Missions, Rua Universidade das Missões, 464, Santo Ângelo, RS, 98802-470, Brazil
  • 刊物主题:Mechanical Engineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1806-3691
文摘
Finite element simulations of regularized viscoplastic flows through a planar expansion is performed. The mechanical model is made up of the conservation equations of mass and momentum, coupled with a regularized form of the Herschel–Bulkley viscosity function, based on the Papanastasiou equation. This model is approximated by a three-field Galerkin least-squares method, in terms of the extra-stress tensor, the velocity vector and the pressure field. A sensitivity analysis is performed, aiming at an investigation of the influence of yield stress, shear-thinning and inertia effects on the flow pattern and pressure drop. The results show a strong dependence of the position and shape of the yielded and unyielded regions on Herschel–Bulkley and Reynolds numbers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700