Steady, Dynamic, Creep, and Recovery Analysis of Ice Cream Mixes Added with Different Concentrations of Xanthan Gum
详细信息    查看全文
  • 作者:Mahmut Dogan (1)
    Ahmed Kayacier (1)
    脰mer Said Toker (1)
    Mustafa Tahsin Yilmaz (2)
    Safa Karaman (1)
  • 关键词:Ice cream ; Xanthan gum ; Steady shear ; Dynamic shear ; Creep and recovery test
  • 刊名:Food and Bioprocess Technology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:6
  • 期:6
  • 页码:1420-1433
  • 全文大小:494KB
  • 参考文献:1. Ahmed, J., & Ramaswamy, H. S. (2006). Viscoelastic properties of sweet potato puree infant food. / Journal of Food Engineering, 74, 376鈥?82. CrossRef
    2. Arbuckle, W. S., & Frandsen, J. H. (1966). / Ice cream. West Port: Avi Pub. Co.
    3. Barnes, H. A. (2000). / A handbook of elementary rheology. Aberystwyth: University of Wales, Institute of Non-Newtonian Fluid Mechanics.
    4. Barry, B. (1983). / Rheology of dermatological vehicles. Dermatological Formulations, Percutaneous Absorption (pp. 351鈥?07). New York: Marcel Dekker.
    5. Bistany, K., & Kokini, J. (1983). Dynamic viscoelastic properties of foods in texture control. / Journal of Rheology, 27, 605. CrossRef
    6. Bower, C., Gallegos, C., Mackley, M., & Madiedo, J. (1999). The rheological and microstructural characterisation of the non-linear flow behaviour of concentrated oil-in-water emulsions. / Rheologica Acta, 38, 145鈥?59. CrossRef
    7. Burgers, J. (1939). / Mechanical considerations-model systems-phenomenological theories of relaxation and of viscosity. First report on viscosity and plasticity. New York: Nordemann.
    8. Caillet, A., Cogn茅, C., Andrieu, J., Laurent, P., & Rivoire, A. (2003). Characterization of ice cream structure by direct optical microscopy. Influence of freezing parameters. / LWT-Food Science and Technology, 36, 743鈥?49. CrossRef
    9. Chamberlain, E., & Rao, M. (1999). Rheological properties of acid converted waxy maize starches in water and 90聽% DMSO/10聽% water. / Carbohydrate Polymers, 40, 251鈥?60. CrossRef
    10. Chan, H. W. S. (1984). / Biophysical methods in food research (vol. 5). Oxford: Wiley-Blackwell.
    11. Chang, Y., & Hartel, R. (2002). Development of air cells in a batch ice cream freezer. / Journal of Food Engineering, 55, 71鈥?8. CrossRef
    12. Cottrell, J. I. L., Pass, G., & Phillips, G. O. (1980). The effect of stabilisers on the viscosity of an ice cream mix. / Journal of the Science of Food and Agriculture, 31, 1066鈥?070. CrossRef
    13. Cox, W., & Merz, E. (1958). Correlation of dynamic and steady flow viscosities. / Journal of Polymer Science, 28, 619鈥?22. CrossRef
    14. Da Silva, J. A. L., & Rao, M. (1992). Viscoelastic properties of food hydrocolloid dispersions. In M. A. Rao & J. F. Steffe (Eds.), / Viscoelastic properties of foods (pp. 285鈥?15). London: Elsevier.
    15. Das, S., & Ghosh, A. (2006). Study of creep, stress relaxation, and inverse relaxation in mulberry ( / Bombyx mori) and tasar ( / Antheraea mylitta) silk. / Journal of Applied Polymer Science, 99, 3077鈥?084. CrossRef
    16. Deman, J., & Beers, A. (1987). Fat crystal networks: structure and rheological properties. / Journal of Texture Studies, 18, 303鈥?18. CrossRef
    17. Dickinson, E., & Stainsby, G. (1982). / Colloids in food. London: Applied Science Publishers.
    18. Dimitreli, G., & Thomareis, A. S. (2008). Effect of chemical composition on the linear viscoelastic properties of spreadable-type processed cheese. / Journal of Food Engineering, 84, 368鈥?74. CrossRef
    19. Dogan, M., & Kayacier, A. (2007). The effect of ageing at a low temperature on the rheological properties of Kahramanmaras-type ice cream mix. / International Journal of Food Properties, 10, 19鈥?4. CrossRef
    20. Dogan, M., Kayacier, A., & Ic, E. (2007). Rheological characteristics of some food hydrocolloids processed with gamma irradiation. / Food Hydrocolloids, 21, 392鈥?96. CrossRef
    21. Dolz, M., Hern谩ndez, M., & Delegido, J. (2006). Oscillatory measurements for salad dressings stabilized with modified starch, xanthan gum, and locust bean gum. / Journal of Applied Polymer Science, 102, 897鈥?03. CrossRef
    22. Dolz, M., Hern谩ndez, M., & Delegido, J. (2008). Creep and recovery experimental investigation of low oil content food emulsions. / Food Hydrocolloids, 22, 421鈥?27. CrossRef
    23. Ferry, J. D. (1980). / Viscoelastic properties of polymers. New York: Wiley.
    24. Franco, J., Raymundo, A., Sousa, I., & Gallegos, C. (1998). Influence of processing variables on the rheological and textural properties of lupin protein-stabilized emulsions. / Journal of Agricultural and Food Chemistry, 46, 3109鈥?115. CrossRef
    25. Franco, J. M., Berjano, M., & Gallegos, C. (1997). Linear viscoelasticity of salad dressing emulsions. / Journal of Agricultural and Food Chemistry, 45, 713鈥?19. CrossRef
    26. Garcia-Ochoa, F., Santos, V., Casas, J., & Gomez, E. (2000). Xanthan gum: production, recovery, and properties. / Biotechnology Advances, 18, 549鈥?79. CrossRef
    27. Goff, H., & Davidson, V. (1992). Flow characteristics and holding time calculations of ice cream mixes in HTST holding tubes. / Journal of Food Protection, 55, 34鈥?7.
    28. Goff, H., & Davidson, V. (1994). Controlling viscosity of ice cream mixes. / Modern Dairy, 73, 12鈥?4.
    29. Goff, H. D. (2002). Formation and stabilisation of structure in ice鈥揷ream and related products. / Current Opinion in Colloid & Interface Science, 7, 432鈥?37. CrossRef
    30. Gunasekaran, S., & Ak, M. M. (2000). Dynamic oscillatory shear testing of foods鈥攕elected applications. / Trends in Food Science and Technology, 11, 115鈥?27. CrossRef
    31. Hernandez, M. J., Tarrega, A., Dolz, M., Costell, E., & Alfaro, M. C. (2004). In A. C. Diogo, N. B. Alvarenga, J. Canada, S. Ferro Palma, J. Dias (Eds.), / Progress in rheology of biological and synthetic polymer systems. Instituto Palitecnica de Beja, G.E.R. Sevilla, 349鈥?54.
    32. Hsu, C. H., & Lo, Y. M. (2003). Characterization of xanthan gum biosynthesis in a centrifugal, packed-bed reactor using metabolic flux analysis. / Process Biochemistry, 38, 1617鈥?625. CrossRef
    33. Ibanoglu, S., & Ibanoglu, E. (1998). Rheological characterization of some traditional Turkish soups. / Journal of Food Engineering, 35, 251鈥?56. CrossRef
    34. Ibarz, A., Vicente, M., & Graell, J. (1987). Rheological behaviour of apple juice and pear juice and their concentrates. / Journal of Food Engineering, 6, 257鈥?67. CrossRef
    35. Innocente, N., Comparin, D., & Corradini, C. (2002). Proteose-peptone whey fraction as emulsifier in ice鈥揷ream preparation. / International Dairy Journal, 12, 69鈥?4. CrossRef
    36. Juszczak, L., Witczak, M., Fortuna, T., & Bany, A. (2004). Rheological properties of commercial mustards. / Journal of Food Engineering, 63, 209鈥?17. CrossRef
    37. Kalogiannis, S., Iakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D. A., & Skaracis, G. N. (2003). Optimization of xanthan gum production by / Xanthomonas campestris grown in molasses. / Process Biochemistry, 39, 249鈥?56. CrossRef
    38. Kaya, S., & Tekin, A. R. (2001). The effect of salep content on the rheological characteristics of a typical ice鈥揷ream mix. / Journal of Food Engineering, 47, 59鈥?2. CrossRef
    39. Lapasin, R., & Pricl, S. (1999). / Rheology of industrial polysaccharides: theory and applications. New York: Aspen Publishers.
    40. Manoi, K., & Rizvi, S. S. H. (2009). Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. / Food Hydrocolloids, 23, 1837鈥?847. CrossRef
    41. Martinou Voulasiki, I. S., & Zerfiridis, G. K. (1990). Effect of some stabilizers on textural and sensory characteristics of yogurt ice cream from sheep鈥檚 milk. / Journal of Food Science, 55, 703鈥?07. CrossRef
    42. Moros, J. E., Franco, J. M., & Gallegos, C. (2002). Rheology of spray dried egg yolk stabilized emulsions. / International Journal of Food Science and Technology, 37, 297鈥?07. CrossRef
    43. Morris, E. R. (1995). Polysaccharide rheology and in-mouth perception. In M. A. Stephen (Ed.), / Food polysaccharides and their applications (pp. 515鈥?46). New York: Marcel Dekker.
    44. MstatC (1986). (4.00 ed.). East Lansing, M.I.: Michigan State University.
    45. Mu帽oz, J., Rinc贸n, F., Carmen Alfaro, M., Zapata, I., de la Fuente, J., Beltr谩n, O., & Le贸n de Pinto, G. (2007). Rheological properties and surface tension of Acacia tortuosa gum exudate aqueous dispersions. / Carbohydrate Polymers, 70, 198鈥?05. CrossRef
    46. Ndjouenkeu, R., Akingbala, J., Richardson, R., & Morris, E. (1995). Weak gel properties of khan flour from / Belschmiedia sp.鈥攁 traditional food thickener from tropical West Africa. / Food Hydrocolloids, 9, 165鈥?72. CrossRef
    47. Nijenhuis, K. (1997). / Thermoreversible networks. Berlin: Springer. CrossRef
    48. Nystr枚m, B., Kj酶niksen, A. L., & Lindman, B. (1996). Effects of temperature, surfactant, and salt on the rheological behavior in semidilute aqueous systems of a nonionic cellulose ether. / Langmuir, 12, 3233鈥?240. CrossRef
    49. Pal, R. (1995). Oscillatory, creep and steady-state flow behaviour of xanthan-thickened oil-in-water emulsions. / American Institute Chemical Engineers, 41, 783鈥?95. CrossRef
    50. Park, J. W. (2005). / Surimi and surimi seafood (2nd ed.). Boca Raton: CRC Press. CrossRef
    51. Rao, M., Cooley, H., & Vitali, A. (1984). Flow properties of concentrated juices at low temperatures. / Food Technology, 38, 113鈥?19.
    52. Rao, M., & Cooley, H. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. / Journal of Texture Studies, 23, 415鈥?25. CrossRef
    53. Rao, M., & Tattiyakul, J. (1999). Granule size and rheological behavior of heated tapioca starch dispersions. / Carbohydrate Polymers, 38, 123鈥?32. CrossRef
    54. Rha, C. (1975). / Theory, determination and control of physical properties of food materials. Dordrecht: D. Reidel Pub. Co. CrossRef
    55. Ross-Murphy, S. (1984). / Rheological methods. Biophysical methods in food research (pp. 138鈥?99). London: Blackwell.
    56. Santipanichwong, R., & Suphantharika, M. (2009). Influence of different [beta]-glucans on the physical and rheological properties of egg yolk stabilized oil-in-water emulsions. / Food Hydrocolloids, 23, 1279鈥?287. CrossRef
    57. Saricoban, C., Yilmaz, M. T., Karakaya, M., & Tiske, S. S. (2010). The effect of different levels of sunflower head pith addition on the properties of model system emulsions prepared from fresh and frozen beef. / Meat Science, 84, 186鈥?95. CrossRef
    58. Sari莽oban, C., 脰zalp, B., Yilmaz, M., 脰zen, G., Karakaya, M., & Akbulut, M. (2008). Characteristics of meat emulsion systems as influenced by different levels of lemon albedo. / Meat Science, 80, 599鈥?06. CrossRef
    59. Sharoba, A., Senge, B., El-Mansy, H., Bahlol, H. E., & Blochwitz, R. (2005). Chemical, sensory and rheological properties of some commercial German and Egyptian tomato ketchups. / European Food Research and Technology, 220, 142鈥?51. CrossRef
    60. Sherman, P. (1966). The texture of ice cream. 3: rheological properties of mix and melted ice cream. / Journal of Food Science, 31, 707鈥?16. CrossRef
    61. Silva, M. F., Fornari, R. C. G., Mazutti, M. A., de Oliveira, D., Padilha, F. F., Cichoski, A. J., Di Cansian, R. L., Luccio, M., & Treichel, H. (2009). Production and characterization of xantham gum by / Xanthomonas campestris using cheese whey as sole carbon source. / Journal of Food Engineering, 90, 119鈥?23. CrossRef
    62. Soukoulis, C., Chandrinos, I., & Tzia, C. (2008). Study of the functionality of selected hydrocolloids and their blends with k-carrageenan on storage quality of vanilla ice cream. / LWT- Food Science and Technology, 41, 1816鈥?827. CrossRef
    63. Stanley, D., Goff, H., & Smith, A. (1996). Texture鈥搒tructure relationships in foamed dairy emulsions. / Food Research International, 29, 1鈥?3. CrossRef
    64. Steffe, J. F. (1996). / Rheological methods in food process engineering. East Lansing: Freeman Press.
    65. Sworn, G. (2000). Xanthan gum. In G. O. Phillips & P. A. Williams (Eds.), / Handbook of hydrocolloids. New York: CRC Press. chap. 6.
    66. Tiziani, S., & Vodovotz, Y. (2005). Rheological effects of soy protein addition to tomato juice. / Food Hydrocolloids, 19, 45鈥?2. CrossRef
    67. Wildmoser, H., Scheiwiller, J., & Windhab, E. J. (2004). Impact of disperse microstructure on rheology and quality aspects of ice cream. / LWT-Food Science and Technology, 37, 881鈥?91. CrossRef
    68. Yapar, A., Atay, S., Kayacier, A., & Yetim, H. (2006). Effects of different levels of salt and phosphate on some emulsion attributes of the common carp ( / Cyprinus carpio L., 1758). / Food Hydrocolloids, 20, 825鈥?30. CrossRef
    69. Yasar, K., Kahyaoglu, T., & Sahan, N. (2009). Dynamic rheological characterization of salep glucomannan/galactomannan-based milk beverages. / Food Hydrocolloids, 23, 1305鈥?311. CrossRef
    70. Yilmaz, M. T., Karaman, S., Cankurt, H., Kayacier, A., & Sagdic, O. (2010). Steady and dynamic oscillatory shear rheological properties of ketchup-processed cheese mixtures: effect of temperature and concentration. / Journal of Food Engineering, 103, 197鈥?10. CrossRef
    71. Yoo, B., & Rao, M. (1996). Creep and dynamic rheological behavior of tomato concentrates: effect of concentration and finisher screen size. / Journal of Texture Studies, 27, 451鈥?59. CrossRef
  • 作者单位:Mahmut Dogan (1)
    Ahmed Kayacier (1)
    脰mer Said Toker (1)
    Mustafa Tahsin Yilmaz (2)
    Safa Karaman (1)

    1. Engineering Faculty, Food Engineering Department, Erciyes University, 38039, Kayseri, Turkey
    2. Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Y谋ld谋z Technical University, 34210, 陌stanbul, Turkey
  • ISSN:1935-5149
文摘
Different xanthan gum concentrations (0鈥?.8聽%) were tested, and the rheological properties of ice cream mixes were characterized as linear viscoelastic solids. Ostwald de Waele was successfully used to fit the steady shear data of ice cream mixes exhibiting a pseudoplastic flow (R 2鈥?gt;鈥?.982). The samples with xanthan gum were characterized as strong gel-like macromolecular dispersions with G鈥?much greater than G鈥?but without a cross-point in the whole range of frequency applied. Cox鈥揗erz rule was not applicable to the ice cream mixes. Steady and dynamic rheology of the ice cream mixes changed with increasing xanthan gum concentration. Besides, the four-component Burger model consisted of the association in series of the Maxwell model and the Kelvin鈥揤oigt model was used to characterize the viscoelasticity. It was also found that the final percentage recovery parameters; J SM, J 鈭?/sub>, J KV, and %R (compliance of Maxwell spring and dashpot, Kelvin鈥揤oigt element and R, respectively) of the ice cream mixes were dramatically changed by the xanthan gum concentration, increasing the internal structure parameters G 0, G 1, 畏 0, and 畏 1 (elastic moduli of Maxwell and Kelvin鈥揤oigt springs and corresponding dashpot viscosities, respectively).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700