The importance of a sterile rhizosphere when phenotyping for root exudation
详细信息    查看全文
  • 作者:René C. P. Kuijken ; Jan F. H. Snel ; Martijn M. Heddes…
  • 关键词:Organic acids ; Phenotyping ; Rhizodeposition ; Rhizosphere ; Tomato ; Root exudation
  • 刊名:Plant and Soil
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:387
  • 期:1-2
  • 页码:131-142
  • 全文大小:790 KB
  • 参考文献:1. Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3:139-48 CrossRef
    2. Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397-406. doi:10.1023/a:1020890311499 CrossRef
    3. Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59-8. doi:10.1093/jxb/erq350 CrossRef
    4. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35-7 CrossRef
    5. Dechassa N, Schenk MK (2004) Exudation of organic anions by roots of cabbage, carrot, and potato as influenced by environmental factors and plant age. J Plant Nutr Soil Sci-Z Pflanzenphysiol Bodenkd 167:623-29. doi:10.1002/jpln.200420424 CrossRef
    6. Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2006) Modified micro suction cup/rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution. Plant Soil 286:99-07 CrossRef
    7. Dinkelaker B, Romheld V, Marschner H (1989) Citric-acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin ( / Lupinus- / albus). Plant Cell Environ 12:285-92 CrossRef
    8. Egle K, Romer W, Keller H (2003) Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie 23:511-18. doi:10.1051/agro:2003025 CrossRef
    9. Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827-37. doi:10.1890/0012-9658(2003)084[0827:hrctfo]2.0.co;2 CrossRef
    10. Gaume A, Machler F, Frossard E (2001) Aluminum resistance in two cultivars of / Zea mays L: root exudation of organic acids and influence of phosphorus nutrition. Plant Soil 234:73-1 CrossRef
    11. Gent MPN, Parrish ZD, White JC (2005) Nutrient uptake among subspecies of Cucurbita pepo L. is related to exudation of citric acid. J Am Soc Hortic Sci 130:782-88
    12. Gherardi MJ, Rengel Z (2004) The effect of manganese supply on exudation of carboxylates by roots of lucerne (Medicago sativa). Plant Soil 260:271-82 CrossRef
    13. Haase S, Neumann G, Kania A, Kuzyakov Y, Romheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208-221. doi:10.1016/j.soilbio.2007.03.014 CrossRef
    14. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153-87. doi:10.1007/s11104-009-9929-9 CrossRef
    15. Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as
  • 作者单位:René C. P. Kuijken (1)
    Jan F. H. Snel (1)
    Martijn M. Heddes (1)
    Harro J. Bouwmeester (2)
    Leo F. M. Marcelis (3)

    1. Wageningen University and Research Centre, Greenhouse Horticulture, Droevendaalsesteeg 1, 6700 PB, Wageningen, The Netherlands
    2. Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6700 PB, Wageningen, The Netherlands
    3. Horticulture and Product Physiology, Wageningen University, Droevendaalsesteeg 1, 6700 PB, Wageningen, The Netherlands
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and aims A fast and reliable phenotyping system forms a major bottleneck in root exudation research. Our goal was to develop such a system to quantify genetic and environmental effects on root exudation. Another aim was characterizing non-sterile phenotyping. Methods We developed a system in which plants can be grown with non-sterile shoot environments and sterile rhizospheres. These sterile systems were compared with non-sterile controls. Results In non-sterile rhizospheres exogenous carbon disappeared quickly with a half-life of 2 to 3?h and root exudate concentrations remained below detection limit. In sterile rhizospheres exogenous carbon levels were relatively stable or depleted slower than in non-sterile rhizospheres and organic acid build-up occurred. Tomato (Solanum lycopersicum) could be grown with sterile roots for several months. Conclusions The differences in carbon depletion in sterile and non-sterile rhizospheres was most likely due to the absence of microbial catabolism in sterile rhizospheres. These results prove that using a sterile phenotyping system is essential to study the quantity and composition of root exudates. The sterile system described in this paper eliminates the obscuring effect caused by microbes on exudation levels. It offers a stable, reliable and easy phenotyping method and can be used to investigate genetic and environmental effects on exudation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700