用户名: 密码: 验证码:
Metabolic engineering of Rhodopseudomonas palustris for squalene production
详细信息    查看全文
  • 作者:Wen Xu ; Changbin Chai ; Lingqiao Shao…
  • 关键词:Squalene ; Rhodopseudomonas palustris ; Squalene ; hopene cyclase ; Fusion expression
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:43
  • 期:5
  • 页码:719-725
  • 全文大小:654 KB
  • 参考文献:1.Kohno Y, Egawa Y, Itoh S, S-i Nagaoka, Takahashi M, Mukai K (1995) Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochimica et biophysica acta (BBA)-lipids and lipid. Metabolism 1256:52–56
    2.Rao CV, Newmark HL, Reddy BS (1998) Chemopreventive effect of squalene on colon cancer. Carcinogenesis 19:287–290CrossRef PubMed
    3.Budiyanto A, Ahmed NU, Wu A, Bito T, Nikaido O, Osawa T, Ueda M, Ichihashi M (2000) Protective effect of topically applied olive oil against photocarcinogenesis following UVB exposure of mice. Carcinogenesis 21:2085–2090CrossRef PubMed
    4.Smith TJ (2000) Squalene: potential chemopreventive agent. Expert Opin Investig Drugs 9:1841–1848CrossRef PubMed
    5.Newmark HL (1997) Squalene, olive oil, and cancer risk: a review and hypothesis. Cancer Epidemiol Biomark Prev 6:1101–1103
    6.Reddy LH, Couvreur P (2009) Squalene: a natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 61:1412–1426CrossRef PubMed
    7.Bhattacharjee P, Shukla V, Singhal R, Kulkarni P (2001) Studies on fermentative production of squalene. World J Microbiol Biotechnol 17:811–816CrossRef
    8.Lewis TE, Nichols PD, McMeekin TA (2001) Sterol and squalene content of a docosahexaenoic-acid-producing thraustochytrid: influence of culture age, temperature, and dissolved oxygen. Mar Biotechnol 3:439–447CrossRef PubMed
    9.Li Q, Chen G-Q, Fan K-W, Lu F-P, Aki T, Jiang Y (2009) Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves. J Agric Food Chem 57:4267–4272CrossRef PubMed
    10.Mantzouridou F, Naziri E, Tsimidou MZ (2009) Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. J Agric Food Chem 57:6189–6198CrossRef PubMed
    11.Yue C-J, Jiang Y (2009) Impact of methyl jasmonate on squalene biosynthesis in microalga Schizochytrium mangrovei. Process Biochem 44:923–927CrossRef
    12.Fan KW, Aki T, Chen F, Jiang Y (2010) Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microbiol Biotechnol 26:1303–1309CrossRef PubMed
    13.Chen G, Fan K-W, Lu F-P, Li Q, Aki T, Chen F, Jiang Y (2010) Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. New Biotechnol 27:382–389CrossRef
    14.Mantzouridou F, Tsimidou MZ (2010) Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. FEMS Yeast Res 10:699–707CrossRef PubMed
    15.Naziri E, Mantzouridou F, Tsimidou MZ (2011) Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J Agric Food Chem 59:9980–9989CrossRef PubMed
    16.Englund E, Pattanaik B, Ubhayasekera SJK, Stensjö K, Bergquist J, Lindberg P (2014) Production of squalene in Synechocystis sp. PCC 6803. PLoS One 9:e90270CrossRef PubMed PubMedCentral
    17.Bondioli P, Mariani C, Lanzani A, Fedeli E, Muller A (1993) Squalene recovery from olive oil deodorizer distillates. J Am Oil Chem Soc 70:763–766CrossRef
    18.He H-P, Corke H (2003) Oil and squalene in amaranthus grain and leaf. J Agric Food Chem 51:7913–7920CrossRef PubMed
    19.Gest H, Kamen MD (1960) The photosynthetic bacteria, in die CO2-assimilation/the assimilation of carbon dioxide. Springer, Berlin, pp 1582–1626CrossRef
    20.Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88:239–249CrossRef PubMed
    21.Carlozzi P, Pushparaj B, Degl’Innocenti A, Capperucci A (2006) Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Appl Microbiol Biotechnol 73:789–795CrossRef PubMed
    22.Jiao Y, Kappler A, Croal LR, Newman DK (2005) Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl Environ Microbiol 71:4487–4496CrossRef PubMed PubMedCentral
    23.Lorenz RT, Casey WM, Parks L (1989) Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae. J Bacteriol 171:6169–6173PubMed PubMedCentral
    24.Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK (2009) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol 191:6145–6156CrossRef PubMed PubMedCentral
    25.Xu W, Yang S, Zhao J, Su T, Zhao L, Liu J (2014) Improving coenzyme Q(8) production in E. coli employing multiple strategies. J Ind Microbiol Biotechnol 41:1297–1303CrossRef PubMed
    26.Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY, Lebar T, Turnšek J, Tomšič N, Avbelj M, Koprivnjak T (2012) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889CrossRef PubMed PubMedCentral
    27.Wang C, Yoon S-H, Jang H-J, Chung Y-R, Kim J-Y, Choi E-S, Kim S-W (2011) Metabolic engineering of E. coli for α-farnesene production. Metab Eng 13:648–655CrossRef PubMed
    28.Pan J-J, Solbiati JO, Ramamoorthy G, Hillerich BS, Seidel RD, Cronan JE, Almo SC, Poulter CD (2015) Biosynthesis of squalene from farnesyl diphosphate in bacteria: three steps catalyzed by three enzymes. ACS Cent Sci 1:77–82CrossRef PubMed PubMedCentral
    29.Sambrook J, Russell DW (1989) Molecular cloning: a laboratory manual, vol 3. Cold Spring Harbor Laboratory Press, New York
    30.Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784–791CrossRef
    31.Inui M, Roh JH, Zahn K, Yukawa H (2000) Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudomonas palustris and construction of stable cloning vectors. Appl Environ Microbiol 66:54–63CrossRef PubMed PubMedCentral
    32.Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the E. coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73CrossRef PubMed
    33.Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRef PubMed
    34.Lu H-T, Jiang Y, Chen F (2004) Determination of squalene using high-performance liquid chromatography with diode array detection. Chromatographia 59:367–371
    35.Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845CrossRef PubMed
    36.Trinh R, Gurbaxani B, Morrison SL, Seyfzadeh M (2004) Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression. Mol Immunol 40:717–722CrossRef PubMed
    37.Kim SW, Keasling J (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in E. coli enhances lycopene production. Biotechnol Bioeng 72:408–415CrossRef PubMed
  • 作者单位:Wen Xu (1)
    Changbin Chai (1)
    Lingqiao Shao (1)
    Jia Yao (1)
    Yang Wang (1)

    1. Department of Pathogen Biology, School of Basic Medical Science, Xi’an Medical University, Xi’an, 710021, Shaanxi, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
Squalene is a strong antioxidant used extensively in the food, cosmetic and medicine industries. Rhodopseudomonas palustris TIE-1 was used as the host because of its ability to grow photosynthetically using solar energy and carbon dioxide from atmosphere. The deletion of the shc gene resulted in a squalene production of 3.8 mg/g DCW, which was 27-times higher than that in the wild type strain. For constructing a substrate channel to elevate the conversion efficiency, we tried to fuse crtE gene with hpnD gene. By fusing the two genes, squalene content was increased to 12.6 mg/g DCW, which was 27.4 % higher than that resulted from the co-expression method. At last, the titer of squalene reached 15.8 mg/g DCW by co-expressing the dxs gene, corresponding to 112-fold increase relative to that for wild-type strain. This study provided novel strategies for improving squalene yield and demonstrated the potential of producing squalene by Rhodopseudomonas palustris.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700