Magnetic control: Switchable ultrahigh magnetic gradients at Fe3O4 nanoparticles to enhance solution-phase mass transport
详细信息    查看全文
  • 作者:Kamonwad Ngamchuea ; Kristina Tschulik ; Richard G. Compton
  • 关键词:superparamagnetic magnetite nanoparticles ; nanoparticle ; modified electrodes ; magnetic field effects ; magnetoelectrochemistry
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:8
  • 期:10
  • 页码:3293-3306
  • 全文大小:2,222 KB
  • 参考文献:[1]Munir A.; Wang J. L.; Li Z. H.; Zhou H. S. Numerical analysis of a magnetic nanoparticle-enhanced microfluidic surface-based bioassay. Microfluid. Nanofluid. 2010, 8, 641-52.CrossRef
    [2]Yu S. J.; Wei Q.; Du B.; Wu D.; Li H.; Yan L. G.; Ma H. M.; Zhang Y. Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens. bioelectron. 2013, 48, 224-29.CrossRef
    [3]Bagheri H.; Afkhami A.; Hashemi P.; Ghanei M. Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Adv. 2015, 5, 21659-1669.CrossRef
    [4]Li F. Y.; Jiang L. P.; Han J.; Liu Q.; Dong Y. H.; Li Y. Y.; Wei Q. A label-free amperometric immunosensor for the detection of carcinoembryonic antigen based on novel magnetic carbon and gold nanocomposites. Rsc Adv. 2015, 5, 19961-9969.CrossRef
    [5]Corot C.; Robert P.; Idee J. M.; Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Delivery Rev. 2006, 58, 1471-504.CrossRef
    [6]He C. N.; Wu S.; Zhao N. Q.; Shi C. S.; Liu E. Z.; Li J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459-469.CrossRef
    [7]Zeng G. B.; Shi N.; Hess M.; Chen X.; Cheng W.; Fan T. X.; Niederberger M. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 2015, 9, 4227-235.CrossRef
    [8]Johnson D. C.; Weber S. G.; Bond A. M.; Wightman R. M.; Shoup R. E.; Krull I. S. Electroanalytical voltammetry in flowing solutions. Anal. Chim. Acta 1986, 180, 187-50.CrossRef
    [9]Deng H. T.; Van Berkel G. J. A thin-layer electrochemical flow cell coupled on-line with electrospray-mass spectrometry for the study of biological redox reactions. Electroanalysis 1999, 11, 857-65.CrossRef
    [10]Compton R. G.; Unwin P. R. Channel and tubular electrodes. J. Electroanal. Chem. 1986, 205, 1-0.CrossRef
    [11]Stamenkovic V. R.; Fowler B.; Mun B. S.; Wang G. F.; Ross P. N.; Lucas C. A.; Markovic N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493-97.CrossRef
    [12]Mayrhofer K. J. J.; Strmcnik D.; Blizanac B. B.; Stamenkovic V.; Arenz M.; Markovic N. M. Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 2008, 53, 3181-188.CrossRef
    [13]Marken F.; Akkermans R. P.; Compton R. G. Voltammetry in the presence of ultrasound: The limit of acoustic streaming induced diffusion layer thinning and the effect of solvent viscosity. J. Electroanal. Chem. 1996, 415, 55-3.CrossRef
    [14]Compton R. G.; Eklund J. C.; Page S. D.; Mason T. J.; Walton D. J. Voltammetry in the presence of ultrasound: Mass transport effects. J. Appl. Electrochem. 1996, 26, 775-84.CrossRef
    [15]Chaure N. B.; Coey J. M. D. Enhanced oxygen reduction at composite electrodes producing a large magnetic gradient. J. Electrochem. Soc. 2009, 156, F39–F46.CrossRef
    [16]Weston M. C.; Gerner M. D.; Fritsch I. Magnetic fields for fluid motion. Anal. Chem. 2010, 82, 3411-418.CrossRef
    [17]Tschulik K.; Cierpka C.; Gebert A.; Schultz L.; Kahler C. J.; Uhlemann M. In situ analysis of three-dimensional electrolyte convection evolving during the electrodeposition of copper in magnetic gradient fields. Anal. Chem. 2011, 83, 3275-281.CrossRef
    [18]Sahore V.; Fritsch I. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: Toward multiple, parallel analyses. Anal. Chem. 2014, 86, 9405-411.CrossRef
    [19]Koza J. A.; Mühlenhoff, S.; Uhlemann M.; Eckert K.; Gebert A.; Schultz L. Desorption of hydrogen from an electrode surface under influence of an external magnetic field—In-situ microscopic observations. Electrochem. Commun. 2009, 11, 425-29.CrossRef
    [20]Leventis N.; Gao X. R. Magnetohydrodynamic electrochemistry in the field of Nd-Fe-B magnets. Theory experiment, and application in self-powered flow delivery systems. Anal. Chem. 2001, 73, 3981-992.CrossRef
    [21]Fahidy T. Z. Magnetoelectrolysis. J. Appl. Electrochem. 1983, 13, 553-63.CrossRef
    [22]Ragsdale S. R.; Grant K. M.; White H. S. Electrochemically generated magnetic forces. Enhanced transport of a paramagnetic redox species in large, nonuniform magnetic fields. J. Am. Chem. Soc. 1998, 120, 13461-3468.CrossRef
    [23]Mutschke G.; Tschulik K.; Weier T.; Uhlemann M.; Bund A.; Fr?hlich, J. On the action of magnetic gradient forces in micro-structured copper deposition. Electrochim. Acta 2010, 55, 9060-066.CrossRef
    [24]Mutschke G.; Tschulik K.; Uhlemann M.; Bund A.; Fr?hlich, J. Comment on “magnetic structuring of electrodeposits- Phys. Rev. Lett. 2012, 109, 229401.CrossRef
    [25]Konig J.; Tschulik K.; Buttner L.; Uhlemann
  • 作者单位:Kamonwad Ngamchuea (1)
    Kristina Tschulik (1)
    Richard G. Compton (1)

    1. Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Enhancing mass transport to electrodes is desired in almost all types of electrochemical sensing, electrocatalysis, and energy storage or conversion. Here, a method of doing so by means of the magnetic gradient force generated at magnetic-nanoparticle-modified electrodes is presented. It is shown using Fe3O4-nanoparticle-modified electrodes that the ultrahigh magnetic gradients (>108 T·m-) established at the magnetized Fe3O4 nanoparticles speed up the transport of reactants and products at the electrode surface. Using the Fe(III)/Fe(II)-hexacyanoferrate redox couple, it is demonstrated that this mass transport enhancement can conveniently and repeatedly be switched on and off by applying and removing an external magnetic field, owing to the superparamagnetic properties of magnetite nanoparticles. Thus, it is shown for the first time that magnetic nanoparticles can be used to control mass transport in electrochemical systems. Importantly, this approach does not require any means of mechanical agitation and is therefore particularly interesting for application in micro- and nanofluidic systems and devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700