Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape
详细信息    查看全文
  • 作者:Christopher C. M. Neumann (1328)
    Eduardo Laborda (1328)
    Kristina Tschulik (1328)
    Kristopher R. Ward (1328)
    Richard G. Compton (1328)
  • 关键词:oxygen reduction reaction ; silver nanoparticles ; nanoelectrocatalysis ; hydrogen peroxide escape ; fuel cells
  • 刊名:Nano Research
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:6
  • 期:7
  • 页码:511-524
  • 全文大小:1118KB
  • 参考文献:1. Jiang, S.; Win, K. Y.; Liu, S. H.; Teng, C. P.; Zheng, Y. G.; Han, M. Y. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. / Nanoscale g class="a-plus-plus">2013g>, / 5, 3127-148. g/10.1039/c3nr34005h">CrossRef
    2. Santos, A.; Kumeria, T.; Losic, D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. / Trac-Trends Anal. Chem. g class="a-plus-plus">2013g>, / 44, 25-8. g/10.1016/j.trac.2012.11.007">CrossRef
    3. Campbell, F. W.; Compton, R. G. The use of nanoparticles in electroanalysis: An updated review. / Anal. Bioanal. Chem. g class="a-plus-plus">2010g>, / 396, 241-59. g/10.1007/s00216-009-3063-7">CrossRef
    4. Majeed, K.; Jawaid, M.; Hassan, A.; Abu Bakar, A.; Abdul Khalil, H. P. S.; Salema, A. A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. / Mater. Des. g class="a-plus-plus">2013g>, / 46, 391-10. g/10.1016/j.matdes.2012.10.044">CrossRef
    5. Zhang, L.; Zhang, J. J.; Wilkinson, D. P.; Wang, H. J. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. / J. Power Sources g class="a-plus-plus">2006g>, / 156, 171-82. g/10.1016/j.jpowsour.2005.05.069">CrossRef
    6. Tammeveski, L.; Erikson, H.; Sarapuu, A.; Kozlova, J.; Ritslaid, P.; Sammelselg, V.; Tammeveski, K. Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. / Electrochem. Commun. g class="a-plus-plus">2012g>, / 20, 15-8. g/10.1016/j.elecom.2012.04.003">CrossRef
    7. Han, J. J.; Li, N.; Zhang, T. Y. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. / J. Power Sources g class="a-plus-plus">2009g>, / 193, 885-89. g/10.1016/j.jpowsour.2009.02.082">CrossRef
    8. Yeager, E. Electrocatalysts for O2 reduction. / Electrochim. Acta g class="a-plus-plus">1984g>, / 29, 1527-537. g/10.1016/0013-4686(84)85006-9">CrossRef
    9. Lim, D. H.; Wilcox, J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. / J. Phys. Chem. C g class="a-plus-plus">2012g>, / 116, 3653-660. g/10.1021/jp210796e">CrossRef
    10. Yashtulov, N. A.; Revina, A. A.; Flid, V. R. The mechanism of oxygen catalytic reduction in the presence of platinum and silver nanoparticles. / Russ. Chem. Bull. g class="a-plus-plus">2010g>, / 59, 1488-494. g/10.1007/s11172-010-0268-z">CrossRef
    11. Spendelow, J. S.; Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. / Phys. Chem. Chem. Phys. g class="a-plus-plus">2007g>, / 9, 2654-675. g/10.1039/b703315j">CrossRef
    12. Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. / J. Phys. Chem. B g class="a-plus-plus">2004g>, / 108, 10955-0964. g/10.1021/jp0379953">CrossRef
    13. Appleby, A. J. Oxygen reduction and corrosion kinetics on phase-oxide-free palladium and silver electrodes as a function of temperature in 85% orthophosphoric acid. / J. Electrochem. Soc. g class="a-plus-plus">1970g>, / 117, 1373-378. g/10.1149/1.2407324">CrossRef
    14. Sánchez-Sánchez, C. M.; Bard, A. J. Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. / Anal. Chem. g class="a-plus-plus">2009g>, / 81, 8094-100. g/10.1021/ac901291v">CrossRef
    15. Horrocks, B. R.; Schmidtke, D.; Heller, A.; Bard, A. J. Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces. / Anal. Chem. g class="a-plus-plus">1993g>, / 65, 3605-614. g/10.1021/ac00072a013">CrossRef
    16. Chatenet, M.; Genies-Bultel, L.; Aurousseau, M.; Durand, R.; Andolfatto, F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum. / J. Appl. Electrochem. g class="a-plus-plus">2002g>, / 32, 1131-140. g/10.1023/A:1021231503922">CrossRef
    17. Adanuvor, P. K.; White, R. E. Oxygen reduction on silver in 6.5M caustic soda solution. / J. Electrochem. Soc. g class="a-plus-plus">1988g>, / 135, 2509-517. g/10.1149/1.2095367">CrossRef
    18. Fuller, T.; Gasteiger, H. A.; Cleghorn, S.; Ramani, V.; Zhao, T.; Nguyen, T. V.; Haug, A.; Bock, C.; Lamy, C.; Ota, K. / Proton Exchange Membrane Fuel Cells 7; The Electrochemical Society: Pennington, 2007.
    19. Sethuraman, V. A.; Weidner, J. W.; Haug, A. T.; Pemberton, M.; Protsailo, L. V. Importance of catalyst stability vis-à-vis hydrogen peroxide formation rates in PEM fuel cell electrodes. / Electrochim. Acta g class="a-plus-plus">2009g>, / 54, 5571-582. g/10.1016/j.electacta.2009.04.062">CrossRef
    20. Seidel, Y. E.; Schneider, A.; Jusys, Z.; Wickman, B.; Kasemo, B.; Behm, R. J. Mesoscopic mass transport effects in electrocatalytic processes. / Faraday Discuss. g class="a-plus-plus">2009g>, / 140, 167-84. g/10.1039/b806437g">CrossRef
    21. Ruvinskiy, P. S.; Bonnefont, A.; Pham-Huu, C.; Savinova, E. R. Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction. / Langmuir g class="a-plus-plus">2011g>, / 27, 9018-027. g/10.1021/la2006343">CrossRef
    22. Zhang, Y. R.; Asahina, S.; Yoshihara, S.; Shirakashi, T. Oxygen reduction on Au nanoparticle deposited boron-doped diamond films. / Electrochim. Acta g class="a-plus-plus">2003g>, / 48, 741-47. g/10.1016/S0013-4686(02)00743-0">CrossRef
    23. Uchida, H.; Yano, H.; Wakisaka, M.; Watanabe, M. Electrocatalysis of the oxygen reduction reaction at Pt and Pt-alloys. / Electrochemistry g class="a-plus-plus">2011g>, / 79, 303-11. g/10.5796/electrochemistry.79.303">CrossRef
    24. Jiang, L.; Hsu, A.; Chu, D.; Chen, R. Size-dependent activity of palladium nanoparticles for oxygen electroreduction in alkaline solutions. / J. Electrochem. Soc. g class="a-plus-plus">2009g>, / 156, B643–B649. g/10.1149/1.3098478">CrossRef
    25. Chen, S. L.; Kucernak, A. Electrocatalysis under conditions of high mass transport rate: Oxygen reduction on single submicrometer-sized Pt particles supported on carbon. / J. Phys. Chem. B g class="a-plus-plus">2004g>, / 108, 3262-276. g/10.1021/jp036831j">CrossRef
    26. Antoine, O.; Bultel, Y.; Durand, R. Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion?. / J. Electroanal. Chem. g class="a-plus-plus">2001g>, / 499, 85-4. g/10.1016/S0022-0728(00)00492-7">CrossRef
    27. Lim, E. J.; Choi, S. M.; Seo, M. H.; Kim, Y.; Lee, S.; Kim, W. B. Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. / Electrochem. Commun. g class="a-plus-plus">2013g>, / 28, 100-03. g/10.1016/j.elecom.2012.12.016">CrossRef
    28. Singh, P.; Buttry, D. A. Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. / J. Phys. Chem. C g class="a-plus-plus">2012g>, / 116, 10656-0663. g/10.1021/jp301676n">CrossRef
    29. Garcia, A. C.; Gasparotto, L. H. S.; Gomes, J. F.; Tremiliosi-Filho, G. Straightforward synthesis of carbon-supported Ag nanoparticles and their application for the oxygen reduction reaction. / Electrocatal. g class="a-plus-plus">2012g>, / 3, 147-52. g/10.1007/s12678-012-0096-z">CrossRef
    30. Demarconnay, L.; Coutanceau, C.; Léger, J. M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol. / Electrochim. Acta g class="a-plus-plus">2004g>, / 49, 4513-521. g/10.1016/j.electacta.2004.05.009">CrossRef
    31. Alia, S. M.; Duong, K.; Liu, T.; Jensen, K.; Yan, Y. Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. / ChemSusChem g class="a-plus-plus">2012g>, / 5, 1619-624. g/10.1002/cssc.201100684">CrossRef
    32. Toh, H. S.; Batchelor-McAuley, C.; Tschulik, K.; Uhlemann, M.; Crossley, A.; Compton, R. G. The anodic stripping voltammetry of nanoparticles: Electrochemical evidence for the surface agglomeration of silver nanoparticles. / Nanoscale, in press, DOI: 10.1039/C3NR00898C.
    33. Davies, T. J.; Compton, R. G. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory. / J. Electroanal. Chem. g class="a-plus-plus">2005g>, / 585, 63-2. g/10.1016/j.jelechem.2005.07.022">CrossRef
    34. Ward, K. R.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Cyclic voltammetry of the EC-mechanism at hemispherical particles and their arrays: The split wave. / J. Phys. Chem. C g class="a-plus-plus">2011g>, / 115, 11204-1215. g/10.1021/jp2023204">CrossRef
    35. Ward, K. R.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: Comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite. / Phys. Chem. Chem. Phys. g class="a-plus-plus">2012g>, / 14, 7264-275. g/10.1039/c2cp40412e">CrossRef
    36. Wang, Y.; Ward, K. R.; Laborda, E.; Salter, C.; Crossley, A.; Jacobs, R. M. J.; Compton, R. G. A joint experimental and computational search for authentic nano-electrocatalytic effects: Electrooxidation of nitrite and L-ascorbate on gold nanoparticle-modified glassy carbon electrodes. / Small g class="a-plus-plus">2013g>, / 9, 478-86. g/10.1002/smll.201201670">CrossRef
    37. Augustine, R.; Rajarathinam, K. Synthesis and characterization of silver nanoparticles and its immobilization on alginate coated sutures for the prevention of surgical wound infections and the / in vitro release studies. / Int. J. Nano Dim. g class="a-plus-plus">2012g>, / 2, 205-12.
    38. Zhou, Y. G.; Rees, N. V.; Compton, R. G. Electrode-nanoparticle collisions: The measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode. / Chem. Phys. Lett. g class="a-plus-plus">2011g>, / 514, 291-93. g/10.1016/j.cplett.2011.08.090">CrossRef
    39. Ward Jones, S. E.; Campbell, F. W.; Baron, R.; Xiao, L.; Compton, R. G. Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: Theory and experiment. / J. Phys. Chem. C g class="a-plus-plus">2008g>, / 112, 17820-7827. g/10.1021/jp807093q">CrossRef
    40. Divi?ek, J.; Kastening, B. Electrochemical generation and reactivity of the superoxide ion in aqueous solutions. / J. Electroanal. Chem. Interfacial Electrochem. g class="a-plus-plus">1975g>, / 65, 603-21. g/10.1016/0368-1874(75)85147-1">CrossRef
    41. Sawyer, D. T. / Electrochemistry for Chemists, 2nd Ed.; Wiley-Interscience: New York, 1995.
    42. Bard, A. J.; Faulkner, L. R. / Electrochemical Methods: Fundamentals and Applications, 2nd Ed.; John Wiley & Sons, Inc.: New York, 2001.
    43. Compton, R. G.; Banks, C. E. / Understanding Voltammetry, 2nd Ed.; World Scientific: London, 2011. g/10.1142/p783">CrossRef
    44. Millero, F. J.; Huang, F.; Graham, T. B. Solubility of oxygen in some 1-1, 2-1, 1-2, and 2-2 electrolytes as a function of concentration at 25°C. / J. Solution. Chem. g class="a-plus-plus">2003g>, / 32, 473-87. g/10.1023/A:1025301314462">CrossRef
    45. Han, P.; Bartels, D. M. Temperature dependence of oxygen diffusion in H2O and D2O. / J. Phys. Chem. g class="a-plus-plus">1996g>, / 100, 5597-602. g/10.1021/jp952903y">CrossRef
    46. Hitt, D. L.; Zakrzwski, C. M.; Thomas, M. A. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. / Smart Mater. Struct. g class="a-plus-plus">2001g>, / 10, 1163-175. g/10.1088/0964-1726/10/6/305">CrossRef
    47. Goszner, K.; K?rner, D.; Hite, R. On the catalytic activity of silver: I. activity, poisoning, and regeneration during the decomposition of hydrogen peroxide. / J. Catal. g class="a-plus-plus">1972g>, / 25, 245-53. g/10.1016/0021-9517(72)90224-2">CrossRef
    48. Fox, M. A.; Akaba, R. Curve crossing in the cyclic voltammetric oxidation of 2-phenylnorbornene. Evidence for an ECE reaction pathway. / J. Am. Chem. Soc. g class="a-plus-plus">1983g>, / 105, 3460-463. g/10.1021/ja00349a014">CrossRef
    49. Merkulova, N. D.; Zhutaeva, G. V.; Shumilova, N. A.; Bagotzky, V. S. Reactions of hydrogen peroxide on a silver electrode in alkaline solution. / Electrochim. Acta g class="a-plus-plus">1973g>, / 18, 169-74. g/10.1016/0013-4686(73)80008-8">CrossRef
    50. Amatore, C.; Savéant, J. M.; Tessier, D. Charge transfer at partially blocked surfaces: A model for the case of microscopic active and inactive sites. / J. Electroanal. Chem. Interfacial Electrochem. g class="a-plus-plus">1983g>, / 147, 39-1. g/10.1016/S0022-0728(83)80055-2">CrossRef
    51. Reller, H.; Kirowa-Eisner, F.; Gileadi, E. Ensembles of microelectrodes: A digital-simulation. / J. Electroanal. Chem. Interfacial Electrochem. g class="a-plus-plus">1982g>, / 138, 65-7. g/10.1016/0022-0728(82)87128-3">CrossRef
    52. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. / Numerical Recipes: The Art of Scientific Computing, 3rd Ed.; Cambridge University Press: Cambridge, 2007.
    53. Wang, Y.; Laborda, E.; Ward, K. R.; Compton, R. G. Kinetic study of oxygen reduction reaction on electrodeposited gold nanoparticles of diameter 17 nm and 40 nm in 0.5 M sulfuric acid. / Submitt. 2013.
  • 作者单位:Christopher C. M. Neumann (1328)
    Eduardo Laborda (1328)
    Kristina Tschulik (1328)
    Kristopher R. Ward (1328)
    Richard G. Compton (1328)

    1328. Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
文摘
The electrocatalytic activity for oxygen reduction reaction (ORR) at neutral pH of citrate-capped silver nanoparticles (diameter = 18 nm) supported on glassy carbon (GC) is investigated voltammetrically. Novelly, the modification of the substrate by nanoparticles sticking to form a random nanoparticle array and the voltammetric experiments are carried out simultaneously by immersion of the GC electrode in an air-saturated 0.1 M NaClO4 solution (pH = 5.8) containing chemically-synthesized nanoparticles. The experimental voltammograms of the resulting nanoparticle array are simulated with homemade programs according to the two-proton, two-electron reduction of oxygen to hydrogen peroxide where the first electron transfer is rate determining. In the case of silver electrodes, the hydrogen peroxide generated is partially further reduced to water via heterogeneous decomposition. Comparison of the results obtained on a silver macroelectrode and silver nanoparticles indicates that, for the silver nanoparticles and particle coverages (0.035%-.457%) employed in this study, the ORR electrode kinetics is slower and the production of hydrogen peroxide larger on the glassy carbon-supported nanoparticles than on bulk silver.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700