G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches." />
Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence
详细信息    查看全文
  • 作者:Chris M Rands (1)
    Aaron Darling (2)
    Matthew Fujita (1) (3)
    Lesheng Kong (1)
    Matthew T Webster (4)
    Céline Clabaut (2)
    Richard D Emes (5) (6)
    Andreas Heger (1)
    Stephen Meader (1)
    Michael Brent Hawkins (3)
    Michael B Eisen (7) (8)
    Clotilde Teiling (9)
    Jason Affourtit (10) (9)
    Benjamin Boese (9)
    Peter R Grant (11)
    Barbara Rosemary Grant (11)
    Jonathan A Eisen (12) (13) (2)
    Arhat Abzhanov (3)
    Chris P Ponting (1)
  • 关键词:Genomics ; Evolution ; Darwin’s finches ; Large ground finch ; Geospiza magnirostris
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:1050KB
  • 参考文献:1. Darwin C: / The Voyage of the Beagle. New York: New American Library; 1988.
    2. Freeman S, Herron J: / Evolutionary Analysis. Upper Saddle River, N.J.: CramOutline&Highlight101; 2003.
    3. Barton NH: / Evolution. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2007.
    4. Futuyma DJ: / Evolution. 2nd edition. Sunderland, Mass: Sinauer Associates; 2009.
    5. Grant BR, Grant PR: / Evolutionary dynamics of a natural population: the large cactus finch of the Galápagos. Chicago: University of Chicago Press; 1989.
    6. Abzhanov A: Darwin's Galapagos finches in modern biology. / Philos Trans R Soc Lond B Biol Sci 2010, 365:1001-007. CrossRef
    7. Sato A, Tichy H, O'HUigin C, Grant PR, Grant BR, Klein J: On the origin of Darwin's finches. / Mol Biol Evol 2001, 18:299-11. CrossRef
    8. Burns KJ, Hackett SJ, Klein NK: Phylogenetic relationships and morphological diversity in Darwin's finches and their relatives. / Evolution 2002, 56:1240-252.
    9. Petren K, Grant PR, Grant BR, Keller LF: Comparative landscape genetics and the adaptive radiation of Darwin's finches: the role of peripheral isolation. / Mol Ecol 2005, 14:2943-957. CrossRef
    10. Grant PR, Grant BR: / How and Why Species Multiply: The Radiation of Darwin's Finches. Princeton, N.J.: Princeton University Press; 2008.
    11. Grant PR, Grant BR: Conspecific versus heterospecific gene exchange between populations of Darwin's finches. / Philos Trans R Soc Lond B Biol Sci 2010, 365:1065-076. CrossRef
    12. Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ: Bmp4 and morphological variation of beaks in Darwin's finches. / Science 2004, 305:1462-465. CrossRef
    13. Mallarino R, Grant PR, Grant BR, Herrel A, Kuo WP, Abzhanov A: Two developmental modules establish 3D beak-shape variation in Darwin's finches. / Proc Natl Acad Sci USA 2011, 108:4057-062. CrossRef
    14. Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ: The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. / Nature 2006, 442:563-67. CrossRef
    15. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, / et al.: The genome of a songbird. / Nature 2010, 464:757-62. CrossRef
    16. Cracraft J, Barker FK: / The Timetree of Life. Oxford: Oxford University Press; 2009.
    17. Arnason U, Adegoke JA, Gullberg A, Harley EH, Janke A, Kullberg M: Mitogenomic relationships of placental mammals and molecular estimates of their divergences. / Gene 2008, 421:37-1. CrossRef
    18. Tegelstrom H, Ebenhard T, Ryttman H: Rate of karyotype evolution and speciation in birds. / Hereditas 1983, 98:235-39. CrossRef
    19. Griffin DK, Robertson LB, Tempest HG, Skinner BM: The evolution of the avian genome as revealed by comparative molecular cytogenetics. / Cytogenet Genome Res 2007, 117:64-7. CrossRef
    20. Meader S, Ponting CP, Lunter G: Massive turnover of functional sequence in human and other mammalian genomes. / Genome Res 2010, 20:1335-343. CrossRef
    21. Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD: Eukaryotic genome size databases. / Nucleic Acids Res 2007, 35:D332-D338. CrossRef
    22. Price AL, Jones NC, Pevzner PA: De novo identification of repeat families in large genomes. / Bioinformatics 2005,21(Suppl 1):i351-i358. CrossRef
    23. Consortium ICGS: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. / Nature 2004, 432:695-16. CrossRef
    24. Zhang G, Parker P, Li B, Li H, Wang J: The genome of Darwin’s Finch (Geospiza fortis). / GigaScience 2012, 1:13.
    25. Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg Le A, Bouffard P, Burt DW, Crasta O, Crooijmans RP, / et al.: Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. / PLoS Biol 2010,8(9):e1000475. CrossRef
    26. Fujita MK, Edwards SV, Ponting CP: The Anolis lizard genome: an amniote genome without isochores. / Genome Biol Evol 2011, 3:974-84. CrossRef
    27. Lunter G, Ponting CP, Hein J: Genome-wide identification of human functional DNA using a neutral indel model. / PLoS Comput Biol 2006, 2:e5. CrossRef
    28. Smith NG, Brandstrom M, Ellegren H: Evidence for turnover of functional noncoding DNA in mammalian genome evolution. / Genomics 2004, 84:806-13. CrossRef
    29. Hardison RC, Roskin KM, Yang S, Diekhans M, Kent WJ, Weber R, Elnitski L, Li J, O'Connor M, Kolbe D, / et al.: Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. / Genome Res 2003, 13:13-6. CrossRef
    30. Heger A, Ponting CP: Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. / Genome Res 2007, 17:1837-849. CrossRef
    31. Heger A, Ponting CP: OPTIC: orthologous and paralogous transcripts in clades. / Nucleic Acids Res 2008, 36:D267-D270. CrossRef
    32. Creevey CJ, Muller J, Doerks T, Thompson JD, Arendt D, Bork P: Identifying single copy orthologs in Metazoa. / PLoS Comput Biol 2011, 7:e1002269. CrossRef
    33. Pereira SL, Baker AJ: A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. / Mol Phylogenet Evol 2006, 38:499-09. CrossRef
    34. Nabholz B, Kunstner A, Wang R, Jarvis ED, Ellegren H: Dynamic evolution of base composition: causes and consequences in avian phylogenomics. / Mol Biol Evol 2011, 28:2197-210. CrossRef
    35. Li WH, Ellsworth DL, Krushkal J, Chang BH, Hewett-Emmett D: Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. / Mol Phylogenet Evol 1996, 5:182-87. CrossRef
    36. Keightley PD, Eyre-Walker A: Deleterious mutations and the evolution of sex. / Science 2000, 290:331-33. CrossRef
    37. Grant PR, Grant BR: Demography and the genetically effective sizes of two populations of Darwin's Finches. / Ecology 1992, 73:766-84. CrossRef
    38. Price TD, Grant PR, Gibbs HL, Boag PT: Recurrent patterns of natural selection in a population of Darwin's finches. / Nature 1984, 309:787-89. CrossRef
    39. Ellegren H: A selection model of molecular evolution incorporating the effective population size. / Evolution 2009, 63:301-05. CrossRef
    40. Grant PR, Grant BR: Hybridization of bird species. / Science 1992, 256:193-97. CrossRef
    41. Balakrishnan CN, Edwards SV: Nucleotide variation, linkage disequilibrium and founder-facilitated speciation in wild populations of the zebra finch (Taeniopygia guttata). / Genetics 2009, 181:645-60. CrossRef
    42. Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. / Mol Biol Evol 2005, 22:2472-479. CrossRef
    43. Yang Z, Wong WS, Nielsen R: Bayes empirical bayes inference of amino acid sites under positive selection. / Mol Biol Evol 2005, 22:1107-118. CrossRef
    44. Nam K, Mugal C, Nabholz B, Schielzeth H, Wolf JB, Backstrom N, Kunstner A, Balakrishnan CN, Heger A, Ponting CP, / et al.: Molecular evolution of genes in avian genomes. / Genome Biol 2010, 11:R68. CrossRef
    45. Duret L, Galtier N: Biased gene conversion and the evolution of mammalian genomic landscapes. / Annu Rev Genomics Hum Genet 2009, 10:285-11. CrossRef
    46. Vorbach C, Harrison R, Capecchi MR: Xanthine oxidoreductase is central to the evolution and function of the innate immune system. / Trends Immunol 2003, 24:512-17. CrossRef
    47. Hyde BB, Liesa M, Elorza AA, Qiu W, Haigh SE, Richey L, Mikkola HK, Schlaeger TM, Shirihai OS: The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo. / Cell Death Differ 2012, 19:1117-126. CrossRef
    48. Pappas CT, Bliss KT, Zieseniss A, Gregorio CC: The Nebulin family: an actin support group. / Trends Cell Biol 2011, 21:29-7. CrossRef
    49. Wang ZQ, Fung MR, Barlow DP, Wagner EF: Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. / Nature 1994, 372:464-67. CrossRef
    50. Snell GD: Dwarf, a New Mendelian Recessive Character of the House Mouse. / Proc Natl Acad Sci USA 1929, 15:733-34. CrossRef
    51. Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L, Rosenfeld MG: A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. / Cell 1988, 55:519-29. CrossRef
    52. Brugmann SA, Powder KE, Young NM, Goodnough LH, Hahn SM, James AW, Helms JA, Lovett M: Comparative gene expression analysis of avian embryonic facial structures reveals new candidates for human craniofacial disorders. / Hum Mol Genet 2010, 19:920-30. CrossRef
    53. Weatherly KL, Ramesh R, Strange H, Waite KL, Storrie B, Proudman JA, Wong EA: The turkey transcription factor Pit-1/GHF-1 can activate the turkey prolactin and growth hormone gene promoters in vitro but is not detectable in lactotrophs in vivo. / Gen Comp Endocrinol 2001, 123:244-53. CrossRef
    54. Hsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J: Effects of the Pit1 mutation on the insulin signaling pathway: implications on the longevity of the long-lived Snell dwarf mouse. / Mech Ageing Dev 2002, 123:1245-255. CrossRef
    55. Govoni KE, Lee SK, Chadwick RB, Yu H, Kasukawa Y, Baylink DJ, Mohan S: Whole genome microarray analysis of growth hormone-induced gene expression in bone: T-box3, a novel transcription factor, regulates osteoblast proliferation. / Am J Physiol Endocrinol Metab 2006, 291:E128-E136. CrossRef
    56. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, / et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. / Nat Genet 2000, 25:25-9. CrossRef
    57. Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, Kuhl H, Baktai G, Peterffy E, Chodhari R, / et al.: DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. / Am J Hum Genet 2008, 83:547-58. CrossRef
    58. Perrone CA, Tritschler D, Taulman P, Bower R, Yoder BK, Porter ME: A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in chlamydomonas and Mammalian cells. / Mol Biol Cell 2003, 14:2041-056. CrossRef
    59. Carvalho AB, Dobo BA, Vibranovski MD, Clark AG: Identification of five new genes on the Y chromosome of Drosophila melanogaster. / Proc Natl Acad Sci USA 2001, 98:13225-3230. CrossRef
    60. Tam LW, Lefebvre PA: The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion. / Cell Motil Cytoskeleton 2002, 51:197-12. CrossRef
    61. Mummery-Widmer JL, Yamazaki M, Stoeger T, Novatchkova M, Bhalerao S, Chen D, Dietzl G, Dickson BJ, Knoblich JA: Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. / Nature 2009, 458:987-92. CrossRef
    62. Kapushesky M, Adamusiak T, Burdett T, Culhane A, Farne A, Filippov A, Holloway E, Klebanov A, Kryvych N, Kurbatova N, / et al.: Gene Expression Atlas update–a value-added database of microarray and sequencing-based functional genomics experiments. / Nucleic Acids Res 2012, 40:D1077-D1081. CrossRef
    63. Swanson WJ, Vacquier VD: The rapid evolution of reproductive proteins. / Nat Rev Genet 2002, 3:137-44. CrossRef
    64. Wilson DE, Reeder DM: / Mammal Species of the World. A Taxonomic and Geographic Reference: Johns Hopkins University Press; 2005.
    65. Mayr E: The number of species of Birds. / The Auk 1946, 63:67.
    66. Ellegren H, Smeds L, Burri R, Olason PI, Backstrom N, Kawakami T, Kunstner A, Makinen H, Nadachowska-Brzyska K, Qvarnstrom A, / et al.: The genomic landscape of species divergence in Ficedula flycatchers. / Nature 2012, 491:756-60.
    67. Feder JL, Egan SP, Nosil P: The genomics of speciation-with-gene-flow. / Trends Genet 2012, 28:342-50. CrossRef
    68. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. / Proc Natl Acad Sci USA 2003, 100:11484-1489. CrossRef
    69. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, / et al.: Aligning multiple genomic sequences with the threaded blockset aligner. / Genome Res 2004, 14:708-15. CrossRef
    70. Goodstadt L, Ponting CP: Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human. / PLoS Comput Biol 2006, 2:e133. CrossRef
    71. Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. / BMC Bioinformatics 2004, 5:113. CrossRef
    72. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E: EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. / Genome Res 2009, 19:327-35. CrossRef
    73. Mallick S, Gnerre S, Muller P, Reich D: The difficulty of avoiding false positives in genome scans for natural selection. / Genome Res 2009, 19:922-33. CrossRef
    74. Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. / Syst Biol 2007, 56:564-77. CrossRef
    75. Penn O, Privman E, Landan G, Graur D, Pupko T: An alignment confidence score capturing robustness to guide tree uncertainty. / Mol Biol Evol 2010, 27:1759-767. CrossRef
    76. Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. / Comput Appl Biosci 1997, 13:555-56.
    77. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. / Mol Biol Evol 2007, 24:1586-591. CrossRef
    78. Nozawa M, Suzuki Y, Nei M: Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. / Proc Natl Acad Sci USA 2009, 106:6700-705. CrossRef
    79. Bakewell MA, Shi P, Zhang J: More genes underwent positive selection in chimpanzee evolution than in human evolution. / Proc Natl Acad Sci USA 2007, 104:7489-494. CrossRef
    80. Suzuki Y: False-positive results obtained from the branch-site test of positive selection. / Genes Genet Syst 2008, 83:331-38. CrossRef
    81. Yang Z, dos Reis M: Statistical properties of the branch-site test of positive selection. / Mol Biol Evol 2011, 28:1217-228. CrossRef
    82. Yang Z, Nielsen R, Goldman N: In defense of statistical methods for detecting positive selection. / Proc Natl Acad Sci USA 2009, 106:E95. Author reply E96 CrossRef
    83. Fletcher W, Yang Z: The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. / Mol Biol Evol 2010, 27:2257-267. CrossRef
    84. / R: A Language and Environment for Statistical Computing. [http://www.R-project.org]
    85. Bonferroni CE: / Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze; 1936.
    86. Eddy SR: A new generation of homology search tools based on probabilistic inference. / Genome Inform 2009, 23:205-11. CrossRef
    87. Eddy SR: Hidden Markov models. / Curr Opin Struct Biol 1996, 6:361-65. CrossRef
    88. Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, / et al.: The Universal Protein Resource (UniProt): an expanding universe of protein information. / Nucleic Acids Res 2006, 34:D187-D191. CrossRef
    89. Notredame C, Higgins DG, Heringa J: T-Coffee: a novel method for fast and accurate multiple sequence alignment. / J Mol Biol 2000, 302:205-17. CrossRef
    90. Sonnhammer EL, Hollich V: Scoredist: a simple and robust protein sequence distance estimator. / BMC Bioinformatics 2005, 6:108. CrossRef
    91. Smit AFA, Hubley R, Green P: / RepeatMasker Open-3.0. http://www.repeatmasker.org (1996-011)
    92. Axelsson E, Webster MT, Ratnakumar A, Ponting CP, Lindblad-Toh K: Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome. / Genome Res 2012, 22:51-3. CrossRef
  • 作者单位:Chris M Rands (1)
    Aaron Darling (2)
    Matthew Fujita (1) (3)
    Lesheng Kong (1)
    Matthew T Webster (4)
    Céline Clabaut (2)
    Richard D Emes (5) (6)
    Andreas Heger (1)
    Stephen Meader (1)
    Michael Brent Hawkins (3)
    Michael B Eisen (7) (8)
    Clotilde Teiling (9)
    Jason Affourtit (10) (9)
    Benjamin Boese (9)
    Peter R Grant (11)
    Barbara Rosemary Grant (11)
    Jonathan A Eisen (12) (13) (2)
    Arhat Abzhanov (3)
    Chris P Ponting (1)

    1. Department of Physiology, Anatomy, and Genetics, MRC Functional Genomics Unit, University of Oxford, Oxford, OX1 3PT, UK
    2. UC Davis Genome Center, University of California Davis, Davis, CA, USA
    3. Harvard University, Organismic and Evolutionary Biology, Cambridge, MA, 02138-2020, USA
    4. Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 751 23, Sweden
    5. School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, LE12 5RD, UK
    6. Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
    7. Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
    8. Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
    9. 454 Life Sciences, a Roche Company, Branford, CT, USA
    10. Life Technologies, South San Francisco, CA, USA
    11. Princeton University, Ecology and Evolutionary Biology, Princeton, NJ, 08544-2016, USA
    12. Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
    13. Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
文摘
Background A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin’s (Galápagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galápagos archipelago took place in the last 2- million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results 13,291 protein-coding genes were predicted from a 991.0 Mb-em class="a-plus-plus">G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700