Electroosmotic flow in polymer-coated slits: a joint experimental/simulation study
详细信息    查看全文
  • 作者:Michele Monteferrante (1)
    Simone Melchionna (2)
    Umberto Marini Bettolo Marconi (3)
    Marina Cretich (1)
    Marcella Chiari (1)
    Laura Sola (1)

    1. Consiglio Nazionale delle Ricerche
    ; Istituto di Chimica del Riconoscimento Molecolare (ICRM-CNR) ; Via Mario Bianco ; 20131 ; Milan ; Italy
    2. Dipartimento di Fisica
    ; Consiglio Nazionale delle Ricerche ; Istituto dei Processi Chimico-Fisici (IPCF-CNR) ; Universit脿 La Sapienza ; P.le A. Moro2 ; 00185 ; Rome ; Italy
    3. Scuola di Scienze e Tecnologie
    ; Universit脿 di Camerino and Istituto Nazionale di Fisica Nucleare (PG) ; Via Madonna delle Carceri ; 62032 ; Camerino ; Italy
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:18
  • 期:3
  • 页码:475-482
  • 全文大小:674 KB
  • 参考文献:1. Benzi, R, Succi, S, Vergassola, M (1992) The Lattice Boltzmann equation: theory and applications. Phys Rep 222: pp. 145-197 CrossRef
    2. Bruus, H (2008) Theoretical microfluidics. Oxford University Press, Oxford
    3. Cao, Q, Zuo, C, Li, L, Ma, Y, Li, N (2010) Electroosmotic flow in a nanofluidic channel coated with polymers. Microfluid Nanofluid 9: pp. 1051-1062 CrossRef
    4. Chiari, M, Cretich, M, Damin, F, Ceriotti, L, Consonni, R (2000) New adsorbed coatings for capillary electrophoresis. Elecrtophoresis 21: pp. 909-916 CrossRef
    5. Doherty, EAS, Berglund, KD, Buchholz, BA, Kourkine, IV, Przybycien, TM, Tilton, RD, Barron, AE (2002) Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA. Electrophoresis 23: pp. 2766-2776 CrossRef
    6. Grass, GW, Holm, K, Slater, GW (2009) Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag tag. Macromolecules 42: pp. 5352-5359 CrossRef
    7. Grier, DG, Behrens, SH (2001) The charge of glass and silica surfaces. J Chem Phys 115: pp. 6716 CrossRef
    8. Harden, JL, Long, D, Ajdari, A (2001) Influence of end-grafted polyelectrolytes on electro-osmosis along charged surfaces. Langmuir 17: pp. 705-715 CrossRef
    9. Hickey, OA, Harden, JL, Slater, GW (2009) Molecular dynamics simulations of optimal dynamic uncharged polymer coatings for quenching electro-osmotic flow. Phys Rev Lett 102: pp. 108304 CrossRef
    10. Hickey, OA, Harden, JL, Slater, GW (2009) Molecular dynamics simulations of optimal dynamic uncharged polymer coatings for quenching electro-osmotic flow. Phys Rev Lett 102: pp. 108304 CrossRef
    11. Hickey, OA, Holm, C, Harden, JL, Slater, GW (2011) Influence of charged polymer coatings on electro-osmotic flow: molecular dynamics simulations. Macromolecules 44: pp. 9455-9463 CrossRef
    12. Horvath, J, Doln铆k, V (2001) Polymer wall coatings for capillary electrophoresis. Electrophoresis 22: pp. 644-655 CrossRef
    13. Masliyah, JH, Bhattacharjee, S (2006) Electrokinetic and colloid transport phenomena. Wiley, London CrossRef
    14. Melchionna, S, Marconi, UBM (2011) Electro-osmotic flows under nanoconfinement: a self-consistent approach. Eur Phys Lett 95: pp. 44002 CrossRef
    15. Melchionna, S, Marconi, UBM (2012) Charge transport in nanochannels: a molecular theory. Langmuir 28: pp. 13727-13740 CrossRef
    16. Quiao, R, He, P (2007) Modulation of electroosmotic flow by neutral polymers. Langmuir 23: pp. 5810 CrossRef
    17. Slater, GW (2009) Modeling the separation of macromolecules: a review of current computer simulation methods. Electrophoresis 30: pp. 792-818 CrossRef
    18. Sola, L, Chiari, M (2012) Modulation of electroosmotic flow in capillary electrophoresis using functional polymer coatings. J Chromatogr A 1270: pp. 324-329 CrossRef
    19. Tessier, F, Slater, GW (2005) Control and quenching of electroosmotic flow with end-grafted polymer chains. Macromolecules 38: pp. 6752-6754 CrossRef
    20. Tessier, F, Slater, GW (2006) Modulation of electroosmotic flow strength with end-grafted polymer chains. Macromolecules 39: pp. 1250-1260 CrossRef
    21. Wijmans, CM, Smit, B (2002) Simulating tethered polymer layers in shear flow with the dissipative particle dynamics technique. Macromolecules 35: pp. 7138-7148 CrossRef
    22. Williams, BA, Vigh, G (1996) Fast, accurate mobility determination method for capillary electrophoresis. Anal Chem 68: pp. 1174-1180 CrossRef
    23. Znaleziona, J, Petr, J, Knob, R, Maier, V, 艩ev膷铆k, J (1999) Dynamic coating agents in CE. Chromatographia 67: pp. 5-12
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Medical Microbiology
    Polymer Sciences
    Nanotechnology
    Mechanics, Fluids and Thermodynamics
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1613-4990
文摘
The quality of separation in capillaries electrophoresis is strongly affected by the magnitude of the electroosmotic flow (EOF). The EOF can be efficiently suppressed by coating the capillary wall with hydrophilic polymers. In this paper, experimental data are presented to show the effect of coating thickness and charge on mass transport. Simulations performed with the lattice Boltzmann technique quantitatively reproduce the EOF with and without the coating and with either a neutral or charged coating layer. Experimental, simulation and theoretical analyses converge toward the interpretation that EO suppression arises from the frictional forces acting on the ionic currents and that a detailed representation of the polymeric coating is not needed in order to capture the phenomenon.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700