A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases
详细信息    查看全文
  • 作者:Ohgew Kweon (1)
    Seong-Jae Kim (1)
    Songjoon Baek (2)
    Jong-Chan Chae (3)
    Michael D Adjei (4)
    Dong-Heon Baek (5)
    Young-Chang Kim (6)
    Carl E Cerniglia (1)
  • 刊名:BMC Biochemistry
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:9
  • 期:1
  • 全文大小:805KB
  • 参考文献:1. Sutherland JB, Rafii F, Khan AA, Cerniglia CE: Microbial transformation and degradation of toxic organic chemicals. / Mechanisms of polycyclic aromatic hydrocarbon degradation / (Edited by: Young LY and Cerniglia CE).New York, Wiley-Liss Publication 1995, 269鈥?06.
    2. Cerniglia CE: Biodegradation of polycyclic aromatic hydrocarbons. / Curr Opin Biotechnol 1993, 4:331鈥?38. CrossRef
    3. Mason JR, Cammack R: The electron-transport proteins of hydroxylating bacterial dioxygenases. / Annu Rev Microbiol 1992, 46:277鈥?05. CrossRef
    4. Butler CS, Mason JR: Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. / Adv Microb Physiol 1997, 38:47鈥?4. CrossRef
    5. Hayaishi O: History and scope. / Oxygenases / (Edited by: Hayaishi O).New York, Academic Press 1962, 1鈥?9.
    6. Feig AL, Lippard SJ: Reactions of non-heme iron (II) centers with dioxygen in biology and chemistry. / Chem Rev 1994, 94:124鈥?33. CrossRef
    7. Raag R, Poulos TL: Crystal structure of the carbon monoxide-substrate-cytochrome P鈥?50CAM ternary complex. / Biochemistry 1989, 28:7586鈥?592. CrossRef
    8. Harayama S, Kok M, Neidle EL: Functional and evolutionary relationships among diverse oxygenases. / Annu Rev Microbiol 1992, 46:565鈥?01. CrossRef
    9. Stingley RL, Khan AA, Cerniglia CE: Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR鈥?. / Biochem Biophys Res Commun 2004, 322:133鈥?46. CrossRef
    10. Stingley RL, Brezna B, Khan AA, Cerniglia CE: Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR鈥?. / Microbiology 2004, 150:3749鈥?761. CrossRef
    11. Saito A, Iwabuchi T, Harayama S: Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. / Chemosphere 1999, 38:1331鈥?337. CrossRef
    12. Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wackett LP, Schocken MJ, Haigler BE: Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816鈥?. / J Bacteriol 1995, 177:2615鈥?621.
    13. Chang HK, Zylstra GJ: Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. / J Bacteriol 1998, 180:6529鈥?537.
    14. Armengaud J, Happe B, Timmis KN: Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. / J Bacteriol 1998, 180:3954鈥?966.
    15. Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE: Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR鈥?. / Appl Environ Microbiol 2001, 67:3577鈥?585. CrossRef
    16. Batie CJ, Ballou DP, Correll CC: Phthalate dioxygenase reductase and related flavin-iron-sulfur containing electron transferases. / Chemistry and biochemistry of flavoenzymes / (Edited by: M眉ller F).Boca Raton, FL, CRC Press 1992, III:543鈥?56.
    17. Werlen C, Kohler HP, van der Meer JR: The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. / J Biol Chem 1996, 271:4009鈥?016. CrossRef
    18. Nam JW, Nojiri H, Yoshida T, Habe H, Yamane H, Omori T: New classification system for oxygenase components involved in ring-hydroxylating oxygenations. / Biosci Biotechnol Biochem 2001, 65:254鈥?63. CrossRef
    19. Kim SJ, Kweon OG, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE: Molecular cloning and expression of genes encoding a novel dioxygenase Involved in low鈥?and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR鈥?. / Appl Environ Microbiol 2006, 72:1045鈥?054. CrossRef
    20. Saito A, Iwabuchi T, Harayama S: A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. / J Bacteriol 2000, 182:2134鈥?141. CrossRef
    21. Treadway SL, Yanagimachi KS, Lankenau E, Lessard PA, Stephanopoulos G, Sinskey AJ: Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. / Appl Microbiol Biotechnol 1999, 51:786鈥?93. CrossRef
    22. Nojiri H, Kamakura M, Urata M, Tanaka T, Chung JS, Takemura T, Yoshida T, Habe H, Omori T: Dioxin catabolic genes are dispersed on the Terrabacter sp. DBF63 genome. / Biochem Biophys Res Commun 2002, 296:233鈥?40. CrossRef
    23. Eaton RW: Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. / J Bacteriol 2001, 183:3689鈥?703. CrossRef
    24. Sho M, Hamel C, Greer CW: Two distinct gene clusters encode pyrene degradation in Mycobacterium sp. strain S65. / FEMS Microbiol Ecol 2004, 48:209鈥?20. CrossRef
    25. Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y: Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. / J Bacteriol 2003, 185:3828鈥?841. CrossRef
    26. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nucl Acids Res 1997, 25:3389鈥?402. CrossRef
    27. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ: Multiple sequence alignment with Clustal X. / Trends Biochem Sci 1998, 23:403鈥?05. CrossRef
    28. Nicholas KB, Nicholas HBJ, Deerfield DW: GeneDoc: Analysis and visualization of genetic variation. / EMBNEW NEWS 1997, 4:14.
    29. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. / Mol Biol Evol 1987, 4:406鈥?25.
    30. Page RD: TreeView: an application to display phylogenetic trees on personal computers. / Comput Appl Biosci 1996, 12:357鈥?58.
    31. Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. / Bioinformatics 2007, 23:127鈥?28. CrossRef
    32. Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler GH, Mazumder R, Nikolskaya AN, Panchenko AR, Rao BS, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH: CDD: a curated Entrez database of conserved domain alignments. / Nucl Acids Res 2003, 31:383鈥?87. CrossRef
    33. Habe H, Miyakoshi M, Chung J, Kasuga K, Yoshida T, Nojiri H, Omori T: Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. / Appl Microbiol Biotechnol 2003, 61:44鈥?4.
    34. Kitagawa W, Suzuki A, Hoaki T, Masai E, Fukuda M: Multiplicity of aromatic ring hydroxylation dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA1 demonstrated by denaturing gradient gel electrophoresis. / Biosci Biotechnol Biochem 2001, 65:1907鈥?911. CrossRef
    35. Armengaud J, Timmis KN: Molecular characterization of Fdx1, a putidaredoxin-type [2Fe鈥?S] ferredoxin able to transfer electrons to the dioxin dioxygenase of Sphingomonas sp. RW1. / Eur J Biochem 1997, 247:833鈥?42. CrossRef
    36. Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T: Identification of three novel salicylate 1鈥揾ydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. / Biochem Biophys Res Commun 2003, 301:350鈥?57. CrossRef
    37. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD: Complete sequence of a 184鈥搆ilobase catabolic plasmid from Sphingomonas aromaticivorans F199. / J Bacteriol 1999, 181:1585鈥?602.
    38. Jones RM, Britt-Compton B, Williams PA: The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. / J Bacteriol 2003, 185:5847鈥?853. CrossRef
    39. Armengaud J, Timmis KN: The reductase RedA2 of the multi-component dioxin dioxygenase system of Sphingomonas sp. RW1 is related to class-I cytochrome P450鈥搕ype reductases. / Eur J Biochem 1998, 253:437鈥?44. CrossRef
    40. Kim E, Zylstra GJ: Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. / J Ind Microbiol Biotechnol 1999, 23:294鈥?02. CrossRef
    41. Cho O, Choi KY, Zylstra GJ, Kim YS, Kim SK, Lee JH, Sohn HY, Kwon GS, Kim YM, Kim E: Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. / Biochem Biophys Res Commun 2005, 327:656鈥?62. CrossRef
    42. Demaneche S, Meyer C, Micoud J, Louwagie M, Willison JC, Jouanneau Y: Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. / Appl Environ Microbiol 2004, 70:6714鈥?725. CrossRef
    43. Kasai Y, Shindo K, Harayama S, Misawa N: Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. / Appl Environ Microbiol 2003, 69:6688鈥?697. CrossRef
    44. Sato SI, Nam JW, Kasuga K, Nojiri H, Yamane H, Omori T: Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. / J Bacteriol 1997, 179:4850鈥?858.
    45. Nakatsu CH, Wyndham RC: Cloning and expression of the transposable chlorobenzoate鈥?,4鈥揹ioxygenase genes of Alcaligenes sp. strain BR60. / Appl Environ Microbiol 1993, 59:3625鈥?633.
    46. Dehmel U, Engesser KH, Timmis KN, Dwyer DF: Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310. / Arch Microbiol 1995, 163:35鈥?1. CrossRef
    47. Locher HH, Leisinger T, Cook AM: 4鈥揟oluene sulfonate methyl-monooxygenase from Comamonas testosteroni T鈥?: purification and some properties of the oxygenase component. / J Bacteriol 1991, 173:3741鈥?378.
    48. Fujii T, Takeo M, Maeda Y: Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. / Microbiology 1997, 143:93鈥?9. CrossRef
    49. Fukumori F, Saint CP: Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1). / J Bacteriol 1997, 179:399鈥?08.
    50. Haak B, Fetzner S, Lingens F: Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2鈥揾alobenzoate 1,2鈥揹ioxygenase from Pseudomonas cepacia 2CBS. / J Bacteriol 1995, 177:667鈥?75.
    51. Bundy BM, Campbell AL, Neidle EL: Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. / J Bacteriol 1998, 180:4466鈥?474.
    52. Kiyohara H, Nagao K, Kouno K, Yano K: Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. / Appl Environ Microbiol 1982, 43:458鈥?61.
    53. Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H: Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. / J Bacteriol 1994, 176:2444鈥?449.
    54. Shepherd JM, Lloyd-Jones G: Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription, and molecular ecology. / Biochem Biophys Res Commun 1998, 247:129鈥?35. CrossRef
    55. Masai E, Yamada A, Healy JM, Hatta T, Kimbara K, Fukuda M, Yano K: Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. / Appl Environ Microbiol 1995, 61:2079鈥?085.
    56. Wackett LP: Toluene dioxygenase from Pseudomonas putida F1. / Methods Enzymol 1990, 188:39鈥?5. CrossRef
    57. Ohtsubo Y, Nagata Y, Kimbara K, Takagi M, Ohta A: Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate, 2鈥揾ydroxy鈥?鈥搊xo鈥?鈥損henylhexa鈥?,4鈥揹ienoic acid. / Gene 2000, 256:223鈥?28. CrossRef
    58. Erickson BD, Mondello FJ: Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. / J Bacteriol 1992, 174:2903鈥?912.
    59. Taira K, Hirose J, Hayashida S, Furukawa K: Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. / J Biol Chem 1992, 267:4844鈥?853.
    60. Martin VJJ, Mohn WW: A novel aromatic-ring-hydroxylating dioxygenase from the diterpenoid-degrading bacterium Pseudomonas abietaniphila BKME鈥?. / J Bacteriol 1999, 181:2675鈥?682.
    61. Urata M, Uchida E, Nojiri H, Omori T, Obo R, Miyaura N, Ouchiyama N: Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. / Biosci Biotechnol Biochem 2004, 68:2457鈥?465. CrossRef
    62. Nomura Y, Nakagawa M, Ogawa N, Harashima S, Oshima Y: Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas putida. / J Ferment Bioeng 1992, 74:333鈥?44. CrossRef
    63. Priefert H, Rabenhorst J, Steinbuchel A: Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. / J Bacteriol 1997, 179:2595鈥?607.
    64. Urata M, Miyakoshi M, Kai S, Maeda K, Habe H, Omori T, Yamane H, Nojiri H: Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2鈥揹ioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. / J Bacteriol 2004, 186:6815鈥?823. CrossRef
    65. Zhou NY, Al-Dulayymi J, Baird MS, Williams PA: Salicylate 5鈥揾ydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. / J Bacteriol 2002, 184:1547鈥?555. CrossRef
    66. Hickey WJ, Sabat G, Yuroff AS, Arment AR, Perez-Lesher J: Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2. / Appl Environ Microbiol 2001, 67:4603鈥?609. CrossRef
    67. Takizawa N, Iida T, Sawada T, Yamauchi K, Wang YW, Fukuda M, Kiyohara H: Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82. / J Biosci Bioeng 1999, 87:721鈥?31. CrossRef
    68. Kosono S, Maeda M, Fuji F, Arai H, Kudo T: Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. / Appl Environ Microbiol 1997, 63:3282鈥?285.
    69. Habe H, Kasuga K, Nojiri H, Yamane H, Omori T: Analysis of cumene (isopropylbenzene) degradation genes from Pseudomonas fluorescens IP01. / Appl Environ Microbiol 1996, 62:4471鈥?477.
    70. Puskas LG, Inui M, Kele Z, Yukawa H: Cloning of genes participating in aerobic biodegradation of p-cumate from Rhodopseudomonas palustris. / DNA Seq 2000, 11:9鈥?0.
    71. Eaton RW: p-Cumate catabolic pathway in Pseudomonas putida Fl: cloning and characterization of DNA carrying the cmt operon. / J Bacteriol 1996, 178:1351鈥?362.
    72. Chang HK, Mohseni P, Zylstra GJ: Characterization and regulation of the genes for a novel anthranilate 1,2鈥揹ioxygenase from Burkholderia cepacia DBO1. / J Bacteriol 2003, 185:5871鈥?881. CrossRef
  • 作者单位:Ohgew Kweon (1)
    Seong-Jae Kim (1)
    Songjoon Baek (2)
    Jong-Chan Chae (3)
    Michael D Adjei (4)
    Dong-Heon Baek (5)
    Young-Chang Kim (6)
    Carl E Cerniglia (1)

    1. Microbiology Division, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA
    2. Division of Personalized Nutrition & Medicine, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA
    3. Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, NJ, 08901, USA
    4. Department of Health Norfolk Department of Public Health Bureau of Laboratories, 聽, Norfolk, VA, 23510, USA
    5. Department of Oral Microbiology and Immunology, School of Dentistry, Dankook University, Chonan, 330-714, Republic of Korea
    6. School of Life Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
文摘
Background Rieske non-heme iron aromatic ring-hydroxylating oxygenases (RHOs) are multi-component enzyme systems that are remarkably diverse in bacteria isolated from diverse habitats. Since the first classification in 1990, there has been a need to devise a new classification scheme for these enzymes because many RHOs have been discovered, which do not belong to any group in the previous classification. Here, we present a scheme for classification of RHOs reflecting new sequence information and interactions between RHO enzyme components. Result We have analyzed a total of 130 RHO enzymes in which 25 well-characterized RHO enzymes were used as standards to test our hypothesis for the proposed classification system. From the sequence analysis of electron transport chain (ETC) components of the standard RHOs, we extracted classification keys that reflect not only the phylogenetic affiliation within each component but also relationship among components. Oxygenase components of standard RHOs were phylogenetically classified into 10 groups with the classification keys derived from ETC components. This phylogenetic classification scheme was converted to a new systematic classification consisting of 5 distinct types. The new classification system was statistically examined to justify its stability. Type I represents two-component RHO systems that consist of an oxygenase and an FNRC-type reductase. Type II contains other two-component RHO systems that consist of an oxygenase and an FNRN-type reductase. Type III represents a group of three-component RHO systems that consist of an oxygenase, a [2Fe-2S]-type ferredoxin and an FNRN-type reductase. Type IV represents another three-component systems that consist of oxygenase, [2Fe-2S]-type ferredoxin and GR-type reductase. Type V represents another different three-component systems that consist of an oxygenase, a [3Fe-4S]-type ferredoxin and a GR-type reductase. Conclusion The new classification system provides the following features. First, the new classification system analyzes RHO enzymes as a whole. RwithSecond, the new classification system is not static but responds dynamically to the growing pool of RHO enzymes. Third, our classification can be applied reliably to the classification of incomplete RHOs. Fourth, the classification has direct applicability to experimental work. Fifth, the system provides new insights into the evolution of RHO systems based on enzyme interaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700