Impact of long-term zero-flow and ecological water conveyance on the radial increment of Populus euphratica in the lower reaches of the Tarim River, Xinjiang, China
详细信息    查看全文
  • 作者:Xiaoya Deng (1) (4)
    Hailiang Xu (2)
    Mao Ye (3)
    Bailian Li (4)
    Jinyi Fu (2)
    Zhifeng Yang (1)

    1. State Key Laboratory of Water Environment Simulation
    ; School of Environment ; Beijing Normal University ; Beijing ; 100075 ; China
    4. Ecological Complexity and Modeling Laboratory
    ; Department of Botany and Plant Sciences ; University of California ; Riverside ; CA ; 92521-0124 ; USA
    2. Key Laboratory of Oasis Ecology and Desert Environment
    ; Xinjiang Institute of Ecology and Geography ; Chinese Academy of Sciences ; 818 South Beijing Road ; 脺r眉mqi ; 830011 ; People鈥檚 Republic of China
    3. School of Geographical Science and Tourism
    ; Xinjiang Normal University ; 102 Xinyi Road ; 脺r眉mqi ; 830054 ; People鈥檚 Republic of China
  • 关键词:Ecological Water Conveyance Project (EWCP) ; Long ; term zero ; flow ; Tarim River ; Populus euphratica ; Radial increment
  • 刊名:Regional Environmental Change
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:15
  • 期:1
  • 页码:13-23
  • 全文大小:903 KB
  • 参考文献:1. Amlin NM, Rood SB (2003) Drought stress and recovery of riparian cottonwoods due to water table alteration along Willow Creek, Alberta. Trees 17:351鈥?58. doi:10.1007/s00468-003-0245-3
    2. Amodei T, Guibal F, Fady B (2013) Relationships between climate and radial growth in black pine from the south of France. Ann Foresr Sci 70:41鈥?7. doi:10.1007/s13595-012-0237-9 CrossRef
    3. Belle GV, Hughes JP (1984) Nonparametric tests for trend in water quality. Water Resour Res 20:127鈥?36 CrossRef
    4. Chen YN, Wang Q, Li WH, Ruan X, Chen YP, Zhang LH (2006) Reasonable water table characterized by vegetation physiological ecology鈥攁 case study of ecological restoration in the Lower Tarim River. Chin Sci Bull 51(1):7鈥?3 (in Chinese) CrossRef
    5. Chen YN, Chen YP, Xu CC, Ye ZX, Li ZQ, Zhu CG, Ma XD (2010) Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrol Process 24:170鈥?77. doi:10.1002/hyp.7429
    6. Chu HJ, Pan TY, Liou JJ (2012) Change-point detection of long-duration extreme precipitation and the effect on hydrologic design: a case study of south Taiwan. Stoch Envirom Res Risk Assess 26(8):1123鈥?130. doi:10.1007/s00477-012-0566-0 CrossRef
    7. Cook ER (1985) A time series analysis approach to tree-ring standardization Lamont-Doherty Geological Observatory, The University of Arizona, New York
    8. Fan ZL, Ma YJ, Zhang H, Wang RH, Zhao YJ, Chou HF (2004) Research of eco-water table and rational depth of groundwater of Tarim River Drainage Basin. Arid Land Geogr 27(1):8鈥?3 (in Chinese)
    9. Fritts HC (1976) Tree rings and climate. Academic Press, New York
    10. Gou XH, Chen FH, Cook E, Jacoby G, Yang MX, Li JB (2007) Streamflow variations of the Yellow River over the past 593聽years in western China reconstructed from tree-ring. Water Resour Res 43(6):1鈥?. doi:10.1029/2006WR005705 CrossRef
    11. Gou XH, Deng Y, Chen FH, Yang MX, Fang KY, Gao LL, Yang T, Zhang F (2010) Tree ring based on streamflow reconstruction for the upper Yellow River over the past 1234聽years. Chin Sci Bull 55(33):4179鈥?186 CrossRef
    12. Graumlich LJ (1993) A 1000-year record of temperature and precipitation in the Sierra Nevada. Quatern Res 39(2):249鈥?55 CrossRef
    13. Gullison JJ, Bourque CP (2001) Spatial prediction of tree and shrub succession in a small watershed in Northern Cape Breton Island, Nova Scotia. Can Ecol Model 137(2鈥?):181鈥?99 CrossRef
    14. Guo QL, Feng Q, Li JL (2009) Environmental changes after ecological water conveyance in the lower reaches of Heihe River, northwest China. Environ Geol 58:1387鈥?396. doi:10.1007/s00254-008-1641-1 CrossRef
    15. Hall AA, Rood SB, Higgins PS (2011) Resizing a river: a downscaled, seasonal flow regime promotes riparian restoration. Restor Ecol 19(3):351鈥?59. doi:10.1111/j.1526-100X.2009.00581.x CrossRef
    16. Hamed KH (2009) Exact distribution of the Mann-Kendall test statistic for persistent data. J Hydrol 365:86鈥?4 CrossRef
    17. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:49鈥?8
    18. Hou P, Beeton RJS, Carter RW, Dong XG, Li X (2007) Response to environmental flows in the lower Tarim River, Xinjiang, China: an ecological interpretation of water-table dynamics. J Environ Manag 83:383鈥?91 CrossRef
    19. Kamruzzaman M, Beecham S, Metcalfe AV (2011) Non-stationarity in rainfall and temperature in the Murray Darling Basin. Hydrol Process 25(10):1659鈥?675. doi:10.1002/hyp.7928 CrossRef
    20. Kang XC, Cheng GD, Kang ES, Zhang QH (2002) Reconstruction of mountain pass runoff based on tree rings in HeiHe River in recent thousand years. Sci China Ser D 32(8):675鈥?85 (in Chinese)
    21. Kendall MG, Gibbons JD (1990) Rank correlation methods, 5th edn. Griffin, London
    22. Larsen CPS, MacDonald GM (1995) Relationship between tree-ring widths, climate, and annual area burned in the boreal forest of Alberta. Can J For Res 25(11):1746鈥?755 CrossRef
    23. Li JF, Yuan YJ, Ma HM, Zhao ZZ, Wang JY (1996) Reconstruction of annual runoff in Yili Area based on tree rings. Hydrology 1:30鈥?5 (in Chinese)
    24. Li JF, Yuan YJ, You XY (1997) 360 Years鈥?runoff reconstruction in the RMQI River Basin using tree rings. Quat Sci 2:131鈥?38 (in Chinese)
    25. Li ZL, Xu ZX, Li JY, Li ZJ (2008) Shift trend and step changes for runoff time series in the Shiyang River Basin, northwest China. Hydrol Process 22(33):4639鈥?646. doi:10.1002/hyp.7127 CrossRef
    26. Li J, Yu B, Zhao C (2013a) Physiological and morphological responses of / Tamarix ramosissima and / Populus euphratica to altered groundwater availability. Tree Physiol 33(1):57鈥?8. doi:10.1093/treephys/tps120 CrossRef
    27. Li WH, Zhou HH, Fu AH, Chen YP (2013b) Ecological response and hydrological mechanism of desert riparian forest in Inland River, northwest of China. Ecohydrology 6(6):949鈥?55. doi:10.1002/eco.1385 CrossRef
    28. Liu Q, Yang ZF, Cui BS (2008) Spatial and temporal variability of annual precipitation during 1961鈥?006 in Yellow River Basin China. J Hydrol 360(3鈥?):330鈥?38 CrossRef
    29. Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China鈥攁 case study of the Shiyang River Basin. J Arid Environ 61(2):277鈥?95 CrossRef
    30. Masih L, Ahmad MD, Uhlenbrook S, Turral H, Karimi P (2009) Analysing streamflow variability and water allocation for sustainable management of water resources in semi-arid Karkheh River Basin, Iran. Phys Chem Earth 34(4鈥?):329鈥?40 CrossRef
    31. Page ES (1954) Continuous inspection schemes. Biometrika 41:100鈥?15 CrossRef
    32. Qin C, Yang B, Burchardt I, Hu XL, Kang XC (2010) Intensified pluvial conditions during the twentieth century in the inland Heihe River Basin in arid northwestern China over the past millennium. Global Planet Change 72:192鈥?00 CrossRef
    33. Rood SB, Ball DJ, Gill KM, Kaluthota S, Letts MG, Pearce DW (2013) Hydrologic linkages between a climate oscillation, river flows, growth and wood 鈭?3C of male and female cottonwood trees. Plant, Cell Environ 36(5):984鈥?93. doi:10.1111/pce.12031 CrossRef
    34. Schulz S, Siebert C, Rodiger T, Al-Raggad MM, Merz R (2013) Application of the water balance model J2000 to estimate groundwater recharge in a semi-arid environment: a case study in the Zarqa River catchment, NW-Jordan. Environ Earth Sci 69(2):605鈥?15. doi:10.1007/s12665-013-2342-y CrossRef
    35. Scott ML, Shafroth PB, Auble GT (1999) Responses of riparian cottonwoods to alluvial water table declines. Environ Manage 23(3):347鈥?58 CrossRef
    36. Stockton CW, Fritts HC (1973) Long-term reconstruction of water level changes for Lake Athabasca by analysis of tree rings. Water Resour Bull 9(5):1006鈥?027 CrossRef
    37. Stockton CW, Jacoby GC (1976) Long-term surface-water supply and streamflow trends in the upper Colorado River basin based on tree-ring analyses. Lake Powell Res Proj Bull 18:1鈥?0
    38. Stockton CW, Meko DM (1975) A long-term history of drought occurrence in western United States as inferred from tree rings. Weatherwise 28(6):244鈥?49 CrossRef
    39. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago
    40. Tabari H, Abghari H, Talaee PH (2012a) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process 26(22):3351鈥?361. doi:10.1002/hyp.8460 CrossRef
    41. Tabari H, Talaee PH, Ezani A, Some鈥檚 BS (2012b) Shift changes and monotonic trends in autocorrelated temperature series over Iran. Theor Appl Climatol 109:95鈥?08. doi:10.1007/s00704-011-0568-8 CrossRef
    42. Willms J, Rood SB, Willms W, Tyree M (1998) Branch growth of riparian cottonwoods: a hydrologically sensitive dendrochronological tool. Trees 12(4):215鈥?23 CrossRef
    43. Xu ZX, Takeuchi K, Ishidaira H (2003) Monotonic trend and step changes in Japanese precipitation. J Hydrol 279:144鈥?50 CrossRef
    44. Xu HL, Song YD, Wang Q, Ai M (2004) The effect of groundwater table on vegetation in the middle and lower reaches of the Tarim River, Xinjiang, China. Acta Phytoecologica Sinica 28(3):400鈥?05 (in Chinese)
    45. Xu HL, Ye M, Song YD (2005) The dynamic variation of water resources and its tendency in the Tarim River Basin. J Geog Sci 15(4):467鈥?74 CrossRef
    46. Xu HL, Ye M, Li JM (2007a) Dynamics of groundwater and ecological response of natural vegetation after water conveyance in the Lower Tarim River. Nat Sci Adv 17(4):460鈥?70 (in Chinese)
    47. Xu HL, Ye M, Song YD, Chen YN (2007b) The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower Tarim River. Environ Monit Assess 131(1鈥?):37鈥?8 CrossRef
    48. Yang YK, Wang WK, Yang ZY (2012) Response analysis of radial growths of / Populus euphratica Oliv. and related climatic-environment factors. Sci Technol Rev 30(16):52鈥?8 (in Chinese)
    49. Ye ZX, Chen YN, Li WH, Yan Y, Wan JH (2009) Groundwater fluctuations induced by ecological water conveyance in the lower Tarim River, Xinjiang, China. J Arid Environ 73:726鈥?32 CrossRef
    50. Ye M, Xu HL, Gong JJ, An HY (2011) Rational ecological groundwater level of / Populus euphratica with the different diameter in lower reaches of Tarim River. Scientia Geographica Sinica 31(2):172鈥?77 (in Chinese)
    51. Yue S, Wang CY (2002) The influence of serial correlation on the Mann鈥揥hitney test for detecting a shift in median. Adv Water Resour 25:325鈥?33 CrossRef
    52. Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman鈥檚 rho tests for detecting monotomic trends in hydrological series. J Hydrol 259:254鈥?71 CrossRef
    53. Zhang L, Dong ZC, Huang XL (2004) Modeling on relation between major plants growth and groundwater depth in arid area. J Desert Res 24(1):110鈥?13 (in Chinese)
    54. Zhu YH, Ren LL, Todd HS, Lv HS, Yu ZB, Wu YQ, Fang XQ (2009) Simulation of / Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China. Hydrol Process 23(17):2460鈥?469. doi:10.1002/hyp.7353 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Geoecology and Natural Processes
    Geology
    Oceanography
    Geography
    Nature Conservation
    Regional Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-378X
文摘
Based on the dendro-hydrology theory, we studied the impacts of two significant environmental occurrences (long-term zero-flow and ecological water conveyance) on the radial increment of Populus euphratica in the lower reaches of the Tarim River, Xinjiang, China. We also studied the relationships between radial increment and groundwater table as a function of the distance from the river channel. We found that the radial increment of P. euphratica respond significantly to both zero-flow and water conveyance, and these responses differed among four transects and they weakened with increasing distance from the Daxihaizi Reservoir. The depth to the groundwater table is a key factor that restricts P. euphratica growth in extremely arid regions, and the relationship between radial increment and the groundwater table was significant. The radial increment decreased remarkably with increasing duration of the zero-flow period. The influence of long-term zero-flows on P. euphratica growth was a long-term and slow process. The response of P. euphratica showed a delayed response to the groundwater changes after ecological water conveyance. This lag response differed among the monitoring transects and different distances away from river channel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700