Strong Acid Mixture and Sequential Geochemical Arsenic Extractions in Surface Sediments from the Santa Maria La Reforma Coastal Lagoon, Mexico: A Bioavailability Assessment
详细信息    查看全文
  • 作者:José R. Rivera-Hernández ; Carlos Green-Ruiz
  • 刊名:Archives of Environmental Contamination and Toxicology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:70
  • 期:2
  • 页码:348-360
  • 全文大小:2,579 KB
  • 参考文献:Accornero A, Gnerre R, Manfra L (2008) Sediment concentrations of trace metals in the Berre lagoon (France): an assessment of contamination. Arch Environ Contam Toxicol 54:372–385CrossRef
    Acevedo-Figueroa D, Jiménez BC, Rodríguez-Sierra CJ (2006) Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ Pollut 141:336–342CrossRef
    Adamo P, Arienzo M, Imperato M, Naimo D, Nardi G, Stanzione D (2005) Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere 61:800–809CrossRef
    Alvarado-Zambrano D (2011) Incorporación de metales en testas de foraminíferos desde los sedimentos y agua asociados en la laguna costera estero de Urías, Sinaloa, México. Tesis de Maestría, ICMyL–UNAM, p 93
    Arenas-Lago D, Andrade ML, Lago-Vila M, Rodríguez-Seijo A, Vega FA (2014) Sequential extraction of heavy metals in soils form a copper mine: distribution and geochemical fractions. Geoderma 230–231:108–118CrossRef
    Armienta-Hernández MA, Rodríguez-Castillo R (1995) Evaluación del riesgo ambiental debido a la presencia de arsénico en Zimapán, Hidalgo. Memoria Final, Fundación MAPFRE, I.G.F., UNAM, México
    Baig JA, Kazi TG, Arain MB, Shah AQ, Sarfraz RA, Afridi HI et al (2009) Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods. J Hazard Mater 167:745–751CrossRef
    Basu A, Saha D, Saha R, Ghosh T, Saha B (2014) A review on sources, toxicity, and remediation technologies for removing arsenic from drinking water. Res Chem Intermed 40:447–485CrossRef
    Bellucci LG, Frignani M, Paolucci D, Ravanelli M (2002) Distribution of heavy metals in sediments of the Venice lagoon: the role of the industrial area. Sci Total Environ 295:35–49CrossRef
    Bergés-Tiznado ME (2010) Biomonitoreo de la disponibilidad de arsénico en sistemas lagunares de Sinaloa a través de ostión de mangle (Crassostrea Corteziensis). Tesis de Maestría, posgrado en ciencias del mar y limnología, pp 1–115
    Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin M, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:109–120CrossRef
    Birth G (2003) A scheme for assessing human impacts on coastal environments using sediments. In: Woodcoffe CD, Furness RA (eds) Coastal GIS 2003. Wollongong University Papers in Center for Maritime Policy, p 14
    Bloundi MK, Duplay J, Quaranta G (2009) Heavy metal contamination of coastal lagoon sediments by anthropogenic activities: the case of Nador (East Morocco). Environ Geol 56:833–843CrossRef
    Buat-Ménard P (1979) Influence de la retombée atmospherique sur la chemie de metaux en trance dans la matiére en suspension de I’Atlantique Nord. Tesis de Doctorado de Estado, Université de Paris VII, Francia
    Canadian Council of Ministers of the Environment (1999) Canadian sediment quality guidelines for the protection of aquatic life: Arsenic. In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg
    Contamservación Internacional (2003) Contamservación y desarrollo para la bahía Santa María, Sinaloa. Estrategia de manejo. Comisión conservación desarrollo. Bahía Santa María
    Contamtreras EF (1985) Las lagunas costeras mexicanas. Centro de Ecodesarrollo, Secretaria de Pesca, México, p 253
    Dixit S, Hering JG (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implication for arsenic mobility. Environ Sci Technol 37:4182–4189CrossRef
    Ergin M, Bodur MN (1999) Silt/clay fractionation in surficial Marmara sediments: implication for water movement and sediment transport paths in a semi-enclosed and two-layered flow system (northeastern Mediterranean Sea). Geo-Mar Lett 18:225–233CrossRef
    Ergin M, Kazan B, Ediger V (1996) Source and depositional controls on heavy metal distribution in marine sediments of the Gulf of Iskenderun, Eastern Mediterranean. Mar Geol 133:223–239CrossRef
    Fernandez-Caliani JC, Ruiz-Muñoz F, Galán E (1997) Clay mineral and heavy metal distribution in the lower estuary of Huelva and adjacent Atlantic shelf, SW Spain. Sci Total Environ 198:181–200CrossRef
    Folk RL (1974) Petrology of sedimentary rocks. Hemphill, Austin
    Food and Drug Administration (FDA) (2007) Action levels, tolerance and guidance levels for poisonous or deleterious substances in seafood. National Shellfish Sanitation Program. Guide for the Control of Molluscan Shellfish. http://​www.​issc.​org/​client_​resources/​2007%20​nssp%20​guide/​section%20​iv%20​chap%20​ii%20​.​04.​pdf . Accessed 4 Jan 2015
    Galán E, Gómez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Giráldez I (2003) Heavy metals partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18:409–421CrossRef
    Gibbs RJ (1977) Transport phases of transition metals in the Amazon and Yukon Rivers. Geol Soc Am Bull 88:829–843CrossRef
    Giménez J, Martínez M, De Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite and goethite. J Hazard Mater 141:575–580CrossRef
    Giménez J, De Pablo J, Martínez M, Rovira M, Valderrama C (2010) Reactive transport of arsenic (III) and arsenic (V) on natural hematite: experimental and modeling. J Colloid Interface Sci 348:293–297CrossRef
    Gleyzes C, Tellier S, Sabrier R, Astruc A (2001) Arsenic characterisation in industrial soils by chemical extractions. Environ Technol 22:27–38CrossRef
    González I, Águila E, Galán E (2007) Partitioning, bioavailability and origin of heavy metalsfrom the Nadoor Lagoon sediments (Morocco) as a basis for their management. Environ Geol 52:1581–1593CrossRef
    Green-Ruiz C, Ruelas-Inzunza J, Páez-Osuna F (2005) Mercury in surface sediments and benthic organisms from Guaymas bay, east coast of Gulf of California. Environ Geochem Health 27:321–329CrossRef
    Green-Ruiz C, Alonso-Rodríguez R, López-Aguilar K, Páez-Osuna F, Ramírez-Jáuregui C, Ramírez-Reséndiz G, et al. (2009) Atlas de contaminantes: Lagunas costeras de Sinaloa. FOMIX Sinaloa, p 109
    Habuda-Stanic M, Kalajdzic B, Kules M, Velic N (2008) Arsenite and arsenate sorption by hydrous ferric oxide/polymeric material. Desalination 229:1–9CrossRef
    Horowitz AJ (1991) A primer on sediment-trace element chemistry. Lewis, Boca Raton, p 136
    Horowitz AJ, Elrick KA (1987) The relations of stream sediment surface area, gain size and composition of trace elements chemistry. Appl Geochem 2:437–452CrossRef
    Kim JY, Davis AP, Kim KW (2003) Stabilization of available arsenic in contaminated mine tailings using iron. Environ Sci Technol 37:189–195CrossRef
    Krieger P, Hagner AF (1943) Gold-nickel mineralization at Alistos, Sinaloa, Mexico. Am Mineral 28:257–271
    Lankford RR (1977) Coastal lagoon of Mexico. Their origin and classification. In: Wiley M (ed) Estuarine processes, vol 2. Academic, New York, pp 182–215
    Larios R, Fernández-Martínez R, Rucandio I (2012a) Comparison of three sequential extraction procedures for fractionation of arsenic from highly polluted mining sediments. Anal Bioanal Chem 402:2909–2921CrossRef
    Larios R, Fernández-Martínez R, Álvarez R, Rucandio I (2012b) Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites. Sci Total Environ 431:426–435CrossRef
    Larios R, Fernández-Martínez R, Lehecho I, Rucandio I (2012c) A methodological approach to evaluate arsenic speciation and bioaccumulation in different plants species from two highly polluted mining areas. Sci Total Environ 414:600–607CrossRef
    Larios R, Fernández-Martínez R, Rucandio I (2013) Assessment of a sequential extraction procedure for arsenic partitioning and application to samples from different pollution sources. Anal Method 5:4096–4104CrossRef
    Leal-Acosta ML, Shumilin E, Mirlean N, Sapozhnikov D, Gordeev V (2010) Arsenic and mercury contamination of sediments of geothermal springs, mangrove lagoon and the Santispac bight, Bahía Contamcepción, Baja California Peninsula. Bull Environ Contam Toxicol 85:609–613CrossRef
    Litter M, Pérez-Carrera A, Eugenia-Morgada M, Ramos O, Quintanilla J, Fernández-Cirelli A (2008) Formas Presentes de Arsénico en Agua y Suelo. In: Bundschuh J, Pérez-Carrera A, Litter MI (eds) Distribución del Arsénico en las Regiones Ibérica e Iberoamericana. CYTED. Buenos Aires, Argentina, pp 5–27, 231
    Liu G, Liu N, Zhang H, Zhang L (2010) The adsorption arsenic on magnetic iron oxide in aqueous solutions. Desalination 21:96–101CrossRef
    Loring DH, Rantala RTT (1977) Geochemical analyses of marine sediments and suspended particulate matter. Fisheries and Marine Service Technical Report 700
    Loring DH, Rantala RTT (1992) Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Sci Rev 32:235–283CrossRef
    MacDonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediments quality guidelines for Florida Coastal Lagoon. Ecotoxicology 5:253–278CrossRef
    Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRef
    Manning BA, Fendorf SE, Goldberg S (1998) Surface structure and stability of arsenic (III) on Goethit: spectroscopic evidencefor inner-sphere complexes. Environ Sci Technol 32:2383–2388CrossRef
    Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7:173–206CrossRef
    Matera V, Le-Hécho I, Laboudigue A, Thomas P, Tellier S, Astruc M (2003) A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ Pollut 126:51–64CrossRef
    Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem Geol 114:347–363CrossRef
    McLaren RG, Naidu R, Smith J, Tiller KG (1998) Fractionation and distribution of arsenic in soils contaminated by cattle dip. J Environ Qual 27:348–354CrossRef
    Mirlean N, Andrus VE, Baisch P, Griep G, Casartelli MR (2003) Arsenic pollution in Patoos lagoon estuarine sediments, Brazil. Mar Pollut Bull 46:1480–1484CrossRef
    Moore JN, Brook EJ, Johns C (1989) Grain size partitioning of metals in contaminated coarse-grained floodplain sediment, Clark Fork River, Montana. Environ Geol Water Sci 14:107–115CrossRef
    Morse JW, Mankenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, Amsterdam, p 196
    Muller K, Ciminelli VST, Dantas MSS, Willscher S (2010) A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res 44:5660–5672CrossRef
    Páez-Osuna F, Ramírez-Reséndiz G, Ruíz-Fernández AC, Soto-Jiménez MF (2007) La contaminación por nitrógeno y fosforo en Sinaloa: Flujos, fuentes, efectos y opciones de manejo. Serie lagunas costeras de Sinaloa. Primera edición. Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán
    PSAnalytical (1997) Millennium Excalibur method for arsenic in drinking, surface, ground, saline and industrial & domestic waste waters. Customer Technical Information File
    Rauret AM (1987) La seqüència estratigràfica de la Cova de les Pixarelles (Tavertet, Osona). Tribuna d’Arqueol. 1986-87. Edicions Dept. Cultura, Generalitat de Catalunya, Barcelona, pp 59–68
    Reddy MS, Basha S, Kumar VGS, Joshi HV, Ramachandraiah G (2004) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Alang-Sosiya ship scrapping yard, India. Mar Pollut Bull 48:1055–1059CrossRef
    Rendón-Martínez JR (2015) Contamtenido de materia orgánica, nitrógeno, fósforo y arsénico total en los sedimentos superficiales del estero de Urías, Mazatlán, Sinaloa. Tesis de Maestría, p 82
    Rivera-Hernández JR, Green-Ruiz C (2014) Geosorption of As(III) from aquepus solutions by red clays: kinetic studies. Bull Environ Contam Toxicol 92:596–601CrossRef
    Romaguera F, Boluda R, Fornes F, Abad M (2008) Comparison of three sequential extractions procedures for trace elements partitioning in three contaminated Mediterranean soils. Environ Geochem Health 30:171–175CrossRef
    Serrano D, Ramírez-Félix E, Valle-Levinson A (2013) Tydal hydrodynamics in a two inlet coastal lagoon in the Gulf of California. Cont Shelf Res 63:1–12CrossRef
    Shumilin E, Páez-Osuna F, Green-Ruiz C, Sapozhnikov D, Rodríguez-Meza G, Godínez-Orta L (2001) Arsenic, antimony, selenium and other trace elements in sediments of the La Paz Lagoon, Peninsula of Baja California, Mexico. Mar Pollut Bull 42(3):174–178CrossRef
    Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural water. Appl Geochem 17(5):517–568CrossRef
    Sofianska E, Michailidis K (2015) Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama Plain, Macedonia, Northern Greece. Environ Monit Assess 187(3):101CrossRef
    Tam NFY, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205CrossRef
    Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombic E, Adriano DC (2001) Arsenic fractionation in soils using and improve sequential extraction procedure. Anal Chim Acta 436:309–323CrossRef
    World Health Organization (2001) Environmental health criteria 224. Arsenic and arsenic compounds. Inter-organization Programme for the Sounds Management of Chemicals, 2nd edn. WHO, Geneva
    Zarate-Castillo MA (2013) Caracterización de subambientes sedimentarios de la laguna Santa María La Reforma, Sinaloa. Tesis de Maestría. Instituto de ciencias del mar y limnologia, UA. Mazatlán, UNAM
    Zhang C, Wang L, Li G, Dong S, Yang J, Wang X (2002) Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Appl Geochem 17:59–68CrossRef
    Zhu N-M, Li Q, Guo X-J, Zhang H, Deng Y (2014) Sequential extraction of anaerobic digestate sludge for the determination of partitioning of heavy metals. Ecotoxicol Environ Safe 102:18–24CrossRef
  • 作者单位:José R. Rivera-Hernández (1)
    Carlos Green-Ruiz (2)

    1. Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, Col. Playa Sur Col. Playa Sur, 82040, Mazatlán, Sinaloa, Mexico
    2. Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, Col. Playa Sur, 82040, Mazatlán, Sinaloa, Mexico
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Terrestrial Pollution
    Agriculture
    Ecology
    Forestry
    Environment
    Soil Science and Conservation
  • 出版者:Springer New York
  • ISSN:1432-0703
文摘
Thirty-three sediment samples were collected from the Santa Maria La Reforma coastal lagoon and digested by way of a strong acid mixture and sequential arsenic (As)-extraction method to determine the arsenic (As) content and bioavailability. The As content was determined by atomic fluorescence spectrometry. In addition, grain-size analyses were performed, and organic carbon, carbonate, and iron (Fe) and manganese (Mn) concentrations were determined. Fe and Mn determination was performed by atomic absorption spectroscopy. A Pearson correlation matrix and As enrichment factors were calculated. Sediment concentrations from Santa Maria La Reforma ranged from 3.6 to 25 µg As g−1 with an average of 13.4 ± 7.6 µg As g−1. The highest values were observed in the northern (Playa Colorada), north-central (Mocorito River discharge zone), and southern zones (“El Tule” agricultural drain). Most samples were classified as exhibiting no or minor As enrichment and were lower than the threshold effect level (TEL; 7.24 µg g−1) for biota (MacDonald et al. in Ecotoxicology 5:253–278, 1996). Low bioavailable As values (<3 %) were measured in the majority of the sediment. The highest As percentages were associated with the oxyhydroxide fraction (F5). The results indicate that As bioavailability is negligible.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700