Role of Nanostructures for Anti-proliferation of Bacteria and Their Quantitative Study Validated by Statistical Analysis
详细信息    查看全文
  • 作者:Rizwan Wahab (1)
    Farheen Khan (2)
  • 关键词:Analytical methods ; Spectrophotometry ; Nanorods ; Nanospheres ; Nanonuts ; E. coli
  • 刊名:Journal of Pharmaceutical Innovation
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:4
  • 页码:282-290
  • 全文大小:952 KB
  • 参考文献:1. Karunakaran C, Gomathisankar P, Manikandan G. Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Meter Chem Phys. 2010;123:585-4. CrossRef
    2. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005;16:2346-3. CrossRef
    3. Wahab R, Kim YS, Mishra A, Yun SI, Shin HS. Formation of ZnO micro-flowers prepared via solution process and their antibacterial activity. Nanoscale Res Lett. 2010;5:1675-1. CrossRef
    4. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles an antimicrobial study. Sci Technol Adv Mater. 2008;9:1-. CrossRef
    5. Wahab R, Hwang IH, Kim YS, Shin HS. Photocatalytic activity of zinc oxide micro-flowers synthesized via solution method. Chem Eng J. 2011;168(1):359-6. CrossRef
    6. Wahab R, Hwang IH, Kim YS, Musarrat J, Siddiqui MA, Seo HK, et al. Non-hydrolytic synthesis and photo-catalytic studies of ZnO nanoparticles. Chem Eng J. 2011;175:450-. CrossRef
    7. Wahab R, Tripathy SK, Shin HS, Mohapatra M, Musarrat J, Al-Khedhairy AA, et al. Photocatalytic oxidation of acetaldehyde with ZnO-quantum dots. Chem Eng J. 2013;226:154-0. CrossRef
    8. Kumar VSS, Rao KV. X-ray peak broadening analysis and optical studies of ZnO nanoparticles derived by surfactant assisted combustion synthesis. J Nano Electron Phys. 2013;5(2):02026-1–-.
    9. Samuel MS, Bose L, George KC. Optical properties of ZnO nanoparticles. Acad Rev. 2009;16(1-):57-5.
    10. Rahman MM, Gruner G, Al-Ghamdi MS, Daous MA, Khan SB, Asiri AM. Chemo sensors development based on low-dimensional codoped Mn2O3–ZnO nanoparticles using flat-silver electrodes. Chem Cent J. 2013;7:60. CrossRef
    11. Viswanatha R, Nayaka YA, Vidyasagar CC, Venkatesh TG. Structural and optical properties of Mg doped ZnO nanoparticles. J Chem Pharm Res. 2012;4(4):1983-.
    12. Hesham RS, Soliman MA, Fathy M and Muhammed M. Novel low temperature route for large scale synthesis of ZnO quantum dots. Intern J Sci. 2012;2305-925.
    13. Aneesh PM, Vanaja KA, Jayaraj MK. Synthesis of ZnO nanoparticles by hydrothermal method. Nanophot Mater. 2007;6639:66390J-1-.
    14. Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langm. 2011;27:4020-. CrossRef
    15. Li LH, Deng JC, Deng HR, Liu ZL, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345(8):994-. CrossRef
    16. Kaur J, Kumar P, Sathiaraj TS, Thangaraj R. Structural, optical and fluoresc ence properties of wet chemically synthesized ZnO:Pd2+ nanocrystals. Int Nano lett. 2013;3(4):2-.
    17. Garfield FM. Quality assurance principles of analytical laboratories. Arlington: Assoc. Official Analytical Chemists; 1984.
    18. Dux JP. Quality assurance in the analytical laboratory. Am Lab. 1983;26:54.
    19. Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, et al. Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull. 2007;42(9):1640-. CrossRef
    20. Wahab R, Ansari SG, Kim YS, Seo HK, Shin HS. Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. 2007;253(18): 7622-626.
    21. Wahab R, Kim YS, Shin HS. Fabrication, characterization and growth mechanism of heterostructured zinc oxide nanostructures via solution method. 2011; 11(3): 334-
  • 作者单位:Rizwan Wahab (1)
    Farheen Khan (2)

    1. College of Science, Department of Zoology, King Saud University, Riyadh, 11451, Saudi Arabia
    2. Department of Chemistry, Aligarh Muslim University, Aligarh, UP, 202002, India
  • ISSN:1939-8042
文摘
The simple and sensitive UV–visible spectrophotometric analytical methods have been adopted for the determination and validation of ZnO nanostructures (nanorods (NRs), nanosphere (NSs), and nanonuts (NNTs)), concentration, which are used to control the bacterial growth of Escherichia coli. This method is based on processing conditions of nanostructures of ZnO using precursors zinc acetate dihydrate (Zn(AC2)2·2H2O), zinc nitrate hexahydrate (Zn(NO3)2·6H2O), sodium hydroxide, hexamethylenetetramine (HMT), methanol, etc. The optical density (OD) of the resulting solution of ZnO nanostructures with E. coli bacteria were measured at 600?nm against the reagent blank, prepared under the same conditions. The use of statistical analysis for evaluation of the resulting solution (ZnO-NRs, ZnO-NSs, and ZnO-NNTs with E. coli) was optimized and validated by various operational parameters. Beer’s law was followed (Concentration range from 0.25-.0?μg?ml?) with apparent molar absorptivity of 4.38?×-02?l?mol??cm? for ZnO-NRs, 2.70?×-02?l?mol??cm? for ZnO-NSs, and 3.10?×-02?l?mol??cm? for ZnO-NNTs, respectively. The calibration curve shows linearity over the concentration range of 0.25-.50?μg?ml? for ZnO-NRs and 0.25-.0?μg?ml? for ZnO-NSs and ZnO-NNTs. Detection limit (LOD) and quantitation limit (LOQ) were found to be 0.022:0.068?μg?ml? for ZnO-NRs, 0.028:0.087?μg?ml? for ZnO-NSs, and 0.044:0.137?μg?ml? for ZnO-NNTs analyzed by spectrophotometric method, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700