Assembling the myofibril
详细信息    查看全文
  • 作者:Michael B. Ferrari (1)
    Sireesha Podugu (1)
    Jeffery D. Eskew (1)
  • 关键词:Long duration transient (LDT) ; short duration transient (SDT) ; fast localized transient (FLT) ; ryanodine receptor Ca2+ release channel (RyR) ; inositol trisphosphate Ca2+ release channel (IP3R) ; calmodulin (CaM) ; myosin light chain kinase (MLCK) ; titin kinase (TK) ; regulatory light chain (RLC) ; protein phosphatase type 1 myosin targeted (PP1M) ; sarcoplasmic endoplasmic reticulum Ca2+ ATPase (SERCA) ; two ; dimensional difference gel electrophoresis (2 ; D DIGE)
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2006
  • 出版时间:July 2006
  • 年:2006
  • 卷:45
  • 期:3
  • 页码:317-337
  • 全文大小:549KB
  • 参考文献:1. Fischman, D. (1970) The synthesis and assembly of myofibrils in embryonic muscle. / Curr. Top. Dev. Biol. 5, 235鈥?80.
    2. Bouche, M., Goldfine, S. M., and Fischman, D. A. (1988) Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system. / J. Cell Biol. 107, 587鈥?96.
    3. Goldfine, S. M., Peng, I., Bouche, M., and Fischman, D. A. (1989) Incorporation of newly synthesized protein by myofibrils and myofilaments in a cell-free system, in / Cellular and Molecular Biology of Muscle Development, Vol. 93 (Kedes, L. H. and Stockdale, F. E., eds.), Alan R. Liss, New York.
    4. Obinata, T. (1993) Contractile proteins and myofibrillogenesis. / Int. Rev. Cytol. 143, 153鈥?89.
    5. Briggs, R. T., Scordilis, S. P., and Powell, J. A. (1995) Myofibrillogenesis in rodent skeletal muscle / in vitro: two pathways involving thick filament aggregates. / Tissue Cell 27, 91鈥?04.
    6. Epstein, H. and Fischman, D. (1991) Molecular analysis of protein assembly in muscle development. / Science 251, 1039鈥?044.
    7. Pollard, T. D. (2000) Reflections on a quarter century of research on contractile systems. / Trends Biochem. Sci. 25, 607鈥?11.
    8. Wang, K. (1985) Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. / Cell Muscle Motil. 6, 315鈥?69.
    9. Trinick, J. (1994) Titin and nebulin: protein rulers in muscle? / Trends Biochem. Sci. 19, 405鈥?09.
    10. Fowler, V. M. (1996) Regulation of actin filament length in erythrocytes and striated muscle. / Curr. Opin. Cell Biol. 8, 86鈥?6.
    11. Wang, K. (1996) Titin/connectin and nebulin: giant protein rulers of muscle structure and function. / Adv. Biophys. 33, 123鈥?34.
    12. Littlefield, R. and Fowler, V. M. (1998) Defining actin filament length in striated muscle: rulers and caps or dynamic stability? / Annu. Rev. Cell Dev. Biol. 14, 487鈥?25.
    13. Gautel, M., Mues, A., and Young, P. (1999) Control of sarcomeric assembly: the flow of information on titin. / Rev. Physiol. Biochem. Pharmacol. 138, 97鈥?37.
    14. Gregorio, C. C., Granzier, H., Sorimachi, H., and Labeit, S. (1999) Muscle assembly: a titanic achievement? / Curr. Opin. Cell Biol. 11, 18鈥?5.
    15. Trinick, J., and Tskhovrebova, L. (1999) Titin: a molecular control freak. / Trends Cell Biol. 9, 377鈥?80.
    16. McElhinny, A. S., Labeit, S. and Gregorio, C. C. (2000) Probing the functional roles of titin ligands in cardiac myofibril assembly and maintenance. / Adv. Exp. Med. Biol. 481, 67鈥?6.
    17. Furst, D. O., Osborn, M., and Weber, K. (1989) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. / J. Cell Biol. 109, 517鈥?27.
    18. Obermann, W. M., Gautel, M., Steiner, F., van der Ven, P. F., Weber, K., and Furst, D. O. (1996) The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kDa carboxy-termi nal region of titin by immunoelectron microscopy. / J. Cell Biol. 134, 1441鈥?453.
    19. Liu, F., Barral, J. M., Bauer, C. C., et al. (1997) Assemblases and coupling proteins in thick filament assembly. / Cell Struct. Funct. 22, 155鈥?62.
    20. Turnacioglu, K. K., Mittal, B., Dabiri, G. A., Sanger, J. M., and Sanger, J. W. (1997) An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. / Mol. Biol. Cell 8, 705鈥?17.
    21. Vikstrom, K. L., Seiler, S. H., Sohn, R. L., et al. (1997) The vertebrate myosin heavy chain: genetics and assembly properties. / Cell Struct. Funct. 22, 123鈥?29.
    22. Wang, S.M., Lo, M. C., Shang, C., Kao, S. C., and Tseng, Y. Z. (1998) Role of M-line proteins in sarcomeric titin assembly during cardiac myofibrillogenesis. / J Cell Biochem. 71, 82鈥?5.
    23. Papa, I., Astier, C., Kwiatek, O., et al. (1999) Alpha actinin-CapZ, an anchoring complex for thin filaments in Z-line. / J. Muscle Res. Cell Motil. 20, 187鈥?97.
    24. Ehler, E., Rothen, B. M., Hammerle, S. P., Komiyama, M., and Perriard, J. C. (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. / J. Cell Sci. 112, 1529鈥?539.
    25. Van der Ven, P. F., Ehler, E., Perriard, J. C., and Furst, D. O. (1999) Thick filament assembly occurs after the formation of a cytoskeletal scaffold. / J. Muscle Res. Cell Motil. 20, 569鈥?79.
    26. Wang, K., and Wright, J. (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. / J. Cell Biol. 107, 2199鈥?212.
    27. Jin, J. P. and Wang, K. (1991) Nebulin as a giant actin-binding template protein in skeletal muscle sarcomere. Interaction of actin and cloned human nebulin fragments. / FEBS Lett. 281, 93鈥?6.
    28. Kruger, M., Wright, J., and Wang, K. (1991) Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. / J. Cell Biol. 115, 97鈥?07.
    29. Casella, J. F., Maack, D. J., and Lin, S. (1986) Purification and initial characterization of a protein from skeletal muscle that caps the barbed ends of actin filaments. / J. Biol. Chem. 261, 10,915鈥?0,921.
    30. Caldwell, J. E., Heiss, S. G., Mermall, V., and Cooper, J. A. (1989) Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. / Biochemistry 28, 8506鈥?514.
    31. Fowler, V. M., Sussmann, M. A., Miller, P. G., Flucher, B. E., and Daniels, M. P. (1993) Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. / J. Cell Biol. 120, 411鈥?20.
    32. Gregorio, C. C. (1997) Models of thin filament assembly in cardiac and skeletal muscle. / Cell Struct. Funct. 22, 191鈥?95.
    33. Schafer, D. A., Waddle, J. A., and Cooper, J. A. (1993) Localization of CapZ during myofibrillogenesis in cultured chicken muscle. / Cell Motil. Cytoskeleton 25, 317鈥?35.
    34. Schafer, D. A., Hug, C., and Cooper, J. A. (1995) Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. / J. Cell Biol. 128, 61鈥?0.
    35. Littlefield, R., Almenar-Queralt, A., and Fowler V. M. (2001) Actin dynamics at pointed ends regulates thin filament length in striated muscle. / Nat. Cell Biol. 3, 544鈥?51.
    36. McElhinny, A. S., Kolmerer, B., Fowler, V. M., Labeit, S., and Gregorio, C. C. (2001) The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. / J. Biol. Chem. 276, 583鈥?92.
    37. Mudry, R. E., Perry, C. N., Richards, M., Fowler, V. M., and Gregorio, C. C. (2003) The interaction of tropomodulin with tropomyosin stabilizes thin filaments in cardiac myocytes. / J. Cell Biol. 162, 1057鈥?068.
    38. Kostyukova, A. S. and Hitchcock-DeGregori, S. E. (2004) Effect of the structure of the N terminus of tropomyosin on tropomodulin function. / J. Biol. Chem. 279, 5066鈥?071.
    39. Kostyukova, A. S., Rapp, B. A., Choy, A., Greenfield, N. J., and Hitchocock-DeGregori, S. E. (2005) Structural requirements of tropomodulin for tropomyosin binding and actin filament capping. / Biochemistry 44, 4905鈥?910.
    40. Greenfield, N. J., Kostyukova, A. S., and Hitchocock-DeGregori, S. E. (2005) Structure and tropomyosin binding properties of the N-terminal capping domain of tropomodulin 1. / Biophys. J. 88, 372鈥?83.
    41. Lin, Z., Lu, M. H., Schultheiss, T., et al. (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. / Cell Motil. Cytoskeleton 29, 1鈥?9.
    42. Sharp, W. W., Terracio, L., Borg, T. K., and Samarel, A. M. (1993) Contractile activity modulates actin synthesis and turnover in cultured neonatal rat heart cells. / Circ. Res. 73, 172鈥?83.
    43. Simpson, D. G., Sharp, W. W., Borg, T. K., Price, R. L., Samarel, A. M., and Terracio, L. (1995) Mechanical regulation of cardiac myofibrillar structure. / Ann. NY Acad. Sci. 752, 131鈥?40.
    44. Simpson, D. G., Sharp, W. W., Borg, T. K., Price, R. L., Terracio, L., and Samarel, A. M. (1996) Mechanical regulation of cardiac myocyte protein turnover and myofibrillar structure. / Am. J. Physiol. 270, C1075-C1087.
    45. Ferrari, M. B., Rohrbough, J. W., and N. C. Spitzer (1996) Spontaneous calcium transients regulate myofibrillogenesis in embryonic / Xenopus myocytes. / Dev. Biol. 178, 484鈥?97.
    46. Ferrari, M. B. and Spitzer, N. C. (1998) A calcium signaling cascade essential for myosin thick filament assembly in / Xenopus myocytes. / J. Cell. Biol. 141, 1349鈥?356.
    47. Byron, K. L., Puglisi, J. L., Holda, J. R., Eble, D., and Samarel, A. M. (1996) Myosin heavy chain turnover in cultured neonatal rat heart cells: effects of [Ca2+]i and contractile activity. / Am. J. Physiol. 271, C1447-C1456.
    48. Eble, D. M., Qi, M., Waldschmidt, S., Lucchesi, P. A., Byron, K. L., and Samarel, A. M. (1998) Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. / Am. J. Physiol. 274, C1226-C1237.
    49. Berchtold, M. W., Brinkmeier, H., and Muntener, M. (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. / Physiol. Rev. 80, 1215鈥?265.
    50. Gregorio, C. C. and Antin, P. B. (2000) To the heart of myofibril assembly. / Trends Cell Biol. 10, 355鈥?62.
    51. Clark, K. A., McElhinny, A. S., Beckerle, M. C., and Gregorio, C. C. (2002) Striated muscle cytoarchitecture: an intricate web of form and function. / Annu. Rev. Cell Dev. Biol. 18, 637鈥?06.
    52. Olson, N. J., Pearson, R. B., Needleman, D. S., Hurwitz, M. Y., Kemp, B. E., and Means, A. R. (1990) Regulatory and structural motifs of chicken gizzard myosin light chain kinase. / Proc. Natl. Acad. Sci. USA 87, 2284鈥?288.
    53. Labeit, S., Gautel, M., Lakey, A., and Trinick, J. (1992) Towards a molecular understanding of titin. / EMBO J. 11, 1711鈥?716.
    54. Mayans, O., van der Ven, P. F., Wilm, M., et al. (1998) Structural basis for activation of the titin kinase domain during myofibrillogenesis. / Nature 395, 863鈥?69.
    55. Flucher, B. E. and Andrews, S. B. (1993) Characterization of spontaneous and action potential-induced Ca++ transients in developing myotubes in culture. / Cell Motil. Cytoskeleton 25, 143鈥?57.
    56. Lorenzon, P., Giovannelli, A., Ragozzino, D., Eusebi, F., and Ruzzier, F. (1997) Spontaneous and repetitive calcium transients in C2C12 mouse myotubes during in vitro myogenesis. / Eur. J. Neurosci. 9, 800鈥?08.
    57. Ferrari, M. B. and Spitzer, M. C. (1999) Calcium signaling in the developing / Xenopus myotome. / Dev. Biol. 213, 269鈥?82.
    58. Li, H., Cook, J. D., Terry, M., Spitzer, N. C., and Ferrari, M. B. (2004) Calcium transients regulate patterned actin assembly during myofibrillogenesis. / Dev. Dyn. 229, 231鈥?42.
    59. Airey, J. A., Baring, M. D., Beck, C. F., et al. (1993a) Failure to make normal alpha ryanodine receptor is an early event associated with the crooked neck dwarf (cn) mutation in chicken. / Dev. Dyn. 197, 169鈥?88.
    60. Airey, J. A., Deerinck, T. J., Ellisman, M. H., et al. (1993b) Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal alpha ryanodine receptor and exhibit a partial mutant phenotype. / Dev. Dyn. 197, 189鈥?02.
    61. Takeshima, H., Iino, M., Takekura, H., et al. (1994) Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. / Nature 369, 556鈥?59.
    62. Takekura, H., Nishi, M., Noda, T., Takeshima, H., and Franzini-Armstrong, C. (1995) Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor. / Proc. Natl. Acad. Sci. USA 92, 3381鈥?385.
    63. Barone, V., Bertocchini, F., Bottinelli, R., et al. (1998) Contractile impairment and structural alterations of skeletal muscles from knockout mice lacking type 1 and type 3 ryanodine receptors. / FEBS Lett. 422, 160鈥?64.
    64. Shirokova, N., Garcia, J., and Rios, E. (1998) Local calcium release in mammalian skeletal muscle. / J. Physiol. 512, 377鈥?84.
    65. Conklin, M. W., Barone, V., Sorrentino, V., and Coronado, R. (1999) Contribution of ryanodine receptor type 3 to Ca(2+) sparks in embryonic mouse skeletal muscle. / Biophys. J. 77, 1394鈥?403.
    66. Conklin, M. W., Ahern, C. A., Vallejo, P., Sorrentino, V., Takeshima, H., and Coronado, R. (2000) Comparison of Ca(2+) sparks produced independently by two ryanodine receptor isoforms (type 1 or type 3). / Biophys. J. 78, 1777鈥?785.
    67. Chun, L. G., Ward, C. W., and Schneider, M. F. (2003) Ca2+ sparks are initiated by Ca2+ entry in embryonic mouse skeletal muscle and decrease in frequency postnatally. / Am. J. Physiol. 285, C686-C697.
    68. Rios, E. and G. Brum. (2002) Ca2+ release flux underlying Ca2+ transients and Ca2+ sparks in skeletal muscle. / Front. Biosci. 7, 1195鈥?211.
    69. Schneider, M. F. and C. W. Ward. (2002) Initiation and termination of calcium sparks in skeletal muscle. / Front. Biosci. 7, 1212鈥?222
    70. Wang, R., Bolstad, J., Kong, H., Zhang, L., Brown, C., and Chen, S. R. (2004) The predicted TM10 transmembrane sequence of the cardiac Ca2+ release channel(ryanodine receptor) is crucial for channel activation and gating. / J. Biol. Chem. 279, 3635鈥?642
    71. Lacampagne, A., Ward, C. W., Klein, M. G., and Schneider, M. F. (2003) Time course of individual Ca2+ sparks in frog skeletal muscle recorded at high time resolution. / J. Gen. Physiol. 121, 179.
    72. Hollingworth, S., Peet, J., Chandler, W. K., and Baylor, S. M. (2001) Calcium sparks in intact skeletal muscle fibers of the frog. / J. Gen. Physiol. 118, 653鈥?78.
    73. Campbell, N. R., Podugu, S. P., and Ferrari, M. B. (2006) Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. / Dev. Biol., in press.
    74. Shirokova, N. and Rios, E. (1997) Small event Ca2+ release: a probable precursor of Ca2+ sparks in frog skeletal muscle. / J. Physiol. 502, 3鈥?1.
    75. Lacampagne, A., Klein, M. G., and Schneider, M. F. (1998) Modulation of the frequency of spontaneous sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks) by myoplasmic [Mg2+] in frog skeletal muscle. / J. Gen. Physiol. 111, 207鈥?24.
    76. Lacampagne, A., Ward, C. W., Klein, M. G., and Schneider, M. F. (1999) Time course of individual Ca2+ sparks in frog skeletal muscle recorded at high time resolution. / J. Gen. Physiol. 113, 187鈥?98. Erratum in: / J. Gen. Physiol. (2003) 121, 179.
    77. Cheng, H., Lederer, M. R., Xiao, R. P., et al. (1996) Excitation-contraction coupling in heart: new insights from Ca2+ sparks. / Cell Calcium 20, 129鈥?40.
    78. Rios E., Stern, M. D., Gonzalez, A., Pizarro, G., and Shirokova, N. (1999) Calcium release flux underlying Ca2+ sparks of frog skeletal muscle. / J. Gen. Physiol. 114, 31鈥?8.
    79. Niggli, E. and Egger, M. (2002) Calcium quarks. / Front. Biosci. 7, d1288-d1297.
    80. Harris, B. N., Li, H., Terry, M., and Ferrari, M. B. (2005) Calcium transients regulate titin organization during myofibrillogenesis. / Cell Motil. Cytoskeleton 60, 129鈥?39.
    81. Pisaniello, A., Serra, C., Rossi, D., et al. (2003) The block of ryanodine receptors selectively inhibits fetal myoblast differentiation. / J. Cell Sci. 116, 1589鈥?597.
    82. Li, J., Puceat, M., Perez-Terzic, C., et al. (2002) Calreticulin reveals a critical Ca(2+) checkpoint in cardiac myofibrillogenesis. / J Cell Biol. 158, 103鈥?13.
    83. Dutton, E. K., Simon, A. M., and Burden, S. J. (1993) Electrical activity-dependent regulation of the acetylcholine receptor delta-subunit gene, MyoD, and myogenin in primary myotubes. / Proc. Natl. Acad. Sci. USA 90, 2040鈥?044.
    84. Liu, C., McFarland, D. C., and Velleman, S. G. (2005) Effect of genetic selection on MyoD and myogenin expression in turkeys with different growth rates. / Poult. Sci. 84, 376鈥?84.
    85. Kubis, H. P., Hanke, N., Scheibe, R. J., Meissner, J. D., and Gros, G. (2003) Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. / Am. J. Physiol. 285, C56-C63.
    86. Carrasco, M. A., Riveros, N., Rios, J., et al. (2003) Depolarization-induced slow calcium transients activate early genes in skeletal muscle cells. / Am. J. Physiol. 284, C1438-C1447.
    87. Woods, N. M., Cuthbertson, K. S., and Cobbold, P. H. (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. / Nature 319, 600鈥?02.
    88. Meyer, T. and Stryer, L. (1991) Calcium spiking. / Annu. Rev. Biophys. Chem. 20, 153鈥?74.
    89. Gu, X. and Spitzer, N. C. (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca++ transients. / Nature 375, 784鈥?87.
    90. Gomez, T. M. and Spitzer, N. C. (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. / Nature 397, 350鈥?55.
    91. Bootman, M. D. and Berridge, M. J. (1995) The elemental principles of calcium signaling. / Cell 83, 675鈥?78.
    92. Berridge, M. J. (1997) The AM and FM of calcium signaling. / Nature 386, 759鈥?60.
    93. Spitzer, N. C. and Sejnowski, T. J. (1997) Biological information processing: bits of progress. / Science 277, 1060鈥?061.
    94. Berridge, M. J., Bootman, M. D., and Roderick, H. L. (2003) Calcium signaling: dynamics, homeostasis and remodeling. / Nat. Rev. Mol. Cell Biol. 4, 517鈥?29.
    95. Fields R. D., Lee P. R., and Cohen J. E. (2005) Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. / Cell Calcium 37, 433鈥?42.
    96. Trybus, K. M. (1994) Role of myosin light chains. / J. Muscle Res. Cell Motil. 15, 587鈥?94.
    97. Gallagher, P. J., Herring, B. P., and Stull, J. T. (1997) Myosin light chain kinases. / J. Muscle Res. Cell Motil. 18, 1鈥?6.
    98. Chin, E. R., Olson, E. N., Richardson, J. A., et al. (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. / Genes Dev. 12, 2499鈥?509.
    99. Wu, H., Naya, F. J., McKinsey, T. A., et al. (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. / EMBO J. 19, 1963鈥?973.
    100. McKinsey, T. A., Zhang, C. L., Lu, J., and Olson, E. N. (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. / Nature 408, 106鈥?11.
    101. Naya, F. S. and Olson, E. (1999) MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. / Curr. Opin. Cell Biol. 11, 683鈥?88.
    102. Olson, E. N. and Williams, R. S. (2000) Remodeling muscles with calcineurin. / Bioessays 22, 510鈥?19.
    103. Schulz, R. A. and Yutzey, K. E. (2004) Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. / Dev Biol. 266, 1鈥?6.
    104. Olivares, E. B., Tanksley, S. J., Airey, J. A., et al. (1991) Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. / Biophys. J. 59, 1153鈥?163.
    105. Oyamada, H., Murayama, T., Takagi, T., et al. (1994) Primary structure and distribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle. / J. Biol. Chem. 269, 17,206鈥?7,214.
    106. Ottini, L., Marziali, G., Conti, A., Charlesworth, A., and Sorrentino, V. (1996) Alpha and beta isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. / Biochem. J. 315, 207鈥?16.
    107. Ogawa, Y., Murayama, T., and Kurebayashi, N. (2002) Ryanodine receptor isoforms of non-Mammalian skeletal muscle. / Front. Biosci. 7, d1184-d1194.
    108. Schiaffino, S., and Margreth, A. (1969) Coordinated development of the sarcoplasmic reticulum and T system during postnatal differentiation of rat skeletal muscle. / J. Cell Biol. 41, 855鈥?75.
    109. Ezerman, E. B. and Ishikawa, H. (1967) Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro. / J. Cell Biol. 35, 405鈥?20.
    110. Huang, C. L. and Hockaday, A. R. (1988) Development of myotomal cells in / Xenopus laevis larvae. / J. Anat. 159, 129鈥?36.
    111. Flucher, B. E. and Franzini-Armstrong, C. (1996) Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. / Proc. Natl. Acad. Sci. USA 93, 8101鈥?106.
    112. De Smedt, H., Parys, J. B., Himpens, B., Missiaen, L., and Borghgraef, R. (1991) Changes in the mechanism of Ca++ mobilization during the differentiation of BC3H1 muscle cells. / Biochem. J. 273, 219鈥?23.
    113. Kume, S., Muto, A., Okano, H., and Mikoshiba, K. (1997) Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in / Xenopus laevis. / Mech. Dev. 66, 157鈥?68.
    114. Estrada, M., Cardenas, C., Liberona J. L., et al. (2001) Calcium transients in 1B5 myotubes lacking ryanodine receptors are related to inositol trisphosphate receptors. / J. Biol. Chem. 276, 22,868鈥?2,874.
    115. Powell, J. A., Carrasco, M. A., Adams, D. S., et al. (2001) IP(3) receptor function and localization in myotubes: an unexplored Ca(2+) signaling pathway in skeletal muscle. / J. Cell Sci. 114, 3673鈥?683.
    116. Araya, R., Liberona, J. L., Cardenas, J. C., et al. (2003) Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells. / J. Gen. Physiol. 121, 3鈥?6.
    117. Spitzer, N. C. (1994) Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation. / Trends Neurosci. 17, 115鈥?18.
    118. Spitzer, N. C. (1994b) Calcium and gene expression. / Prog. Brain Res. 103, 123鈥?26. CrossRef
    119. Niggli, E. (1999) Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. / Annu. Rev. Physiol. 61, 311鈥?35.
    120. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) Signal transduction. The calcium entry pas de deux. / Science 287, 1604鈥?605.
    121. Petersen, O. H. (2002) Calcium signal compartmentalization. / Biol. Res. 35, 177鈥?82. CrossRef
    122. Marcez, N. and Mironneau, J. (2004) Local Ca2+ signals in cellular signaling. / Curr. Mol. Med. 4, 263鈥?75.
    123. Ward C. W., Protasi, F., Castillo, D., et al. (2001) Type 1 and type 3 ryanodine receptors generate different Ca(2+) release event activity in both intact and permeabilized myotubes. / Biophys. J. 81, 3216鈥?230.
    124. Percival, A. L., Williams, A. J., Kenyon, J. L., Grinsell, M. M., Airey, J. A., and Sutko J. L. (1994) Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. / Biophys. J. 67, 1834鈥?850.
    125. O'Brien, J. Valdivia, H. H., and Block, B. A. (1995) Physiological differences between the alpha and beta ryanodine receptors of fish skeletal muscle. / Biophys. J. 68, 471鈥?82.
    126. Spitzer, N. C. (1976) The ionic basis of the resting potential and a slow depolarizing response in Rohon-Beard neurones of / Xenopus tadpoles. / J. Physiol. 255, 105鈥?35.
    127. Kidokoro, Y. and Saito, M. (1988) Early cross-striation formation in twitching / Xenopus myocytes in culture. / Proc. Natl. Acad. Sci. USA 85, 1978鈥?982.
    128. Linsdell, P. and Moody, W. J. (1995) Electrical activity and calcium influx regulate ion channel development in embryonic / Xenopus skeletal muscle. / J. Neurosci. 15, 4507鈥?514.
    129. Henderson, L. P., and Spitzer, N. C. (1986) Autonomous early differentiation of neurons and muscle cells in single cell cultures. / Dev. Biol. 113, 381鈥?87.
    130. Shainberg, A., Yagil, G., and Yaffe, D. (1969) Control of myogenesis / in vitro by Ca2+ concentration in nutritional medium. / Exp. Cell. Res. 58, 163鈥?67.
    131. Bijlenga, P., Liu J. H., Espinos, E. et al. (2000) T-type alpha 1H Ca2_ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. / Proc. Natl. Acad. Sci. USA 97, 7627鈥?632.
    132. Liu, J. H., Konig, S., Michel, M., et al. (2003) Acceleration of human myoblast fusion by depolarization: graded Ca2+ signals involved. / Development 130, 3437鈥?446.
    133. Spruce, A. E. and Moody, W. J. (1992) Developmental sequence of expression of voltage-dependent currents in embryonic / Xenopus laevis myocytes. / Dev. Biol. 154, 11鈥?2.
    134. Maruyama, K., Kimura, S., Kuroda, M., and and Handa, S. (1977) Connectin, an elastic protein of muscle Its abundance in cardiac myofibrils. / J. Biochem. 82, 347鈥?50.
    135. Maruyama, K., Matsubara S., Natori R., Nonomura, Y., and Kimura, S. (1977) Connectin, an elastic protein of muscle. Characterization and function. / J. Biochem. 82, 317鈥?37.
    136. Maruyama, K., Murakami, F., and Ohashi, K. (1977) Connectin, an elastic protein of muscle. Comparative biochemistry. / J. Biochem. 82, 339鈥?45.
    137. Wang, K., McClure, J. and Tu, A. (1979) Titin: major myofibrillar components of striated muscle. / Proc. Natl. Acad. Sci. USA 76, 3698鈥?02.
    138. Furst, D.O., Osborn, M., Nave, R. and Weber, K. (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J. Cell Biol. 106, 1563鈥?572.
    139. Tskhovrebova, L. and Trinick, J. (2003) Titin: properties and family relationships. / Nat. Rev. Mol. Cell. Biol. 4, 679鈥?89.
    140. Maruyama, K., Yoshioka, T., Higuchi, H., Ohashi, K., Kimura, S., and Natori, R. (1985) Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. / J. Cell Biol. 101, 2167鈥?172.
    141. Van der Ven, P. F., Schaart, G., Croes, H. J., Jap, P. H., Ginsel, L. A., and Ramaekers, F. C. (1993) Titin aggregates associated with intermediate filaments align along stress fiber-like structures during human skeletal muscle cell differentiation. / J. Cell Sci. 106, 749鈥?59.
    142. Van der Ven P. F. and Furst, D. O. (1997) Assembly of titin, myomesin and M-protein into the sarcomeric M band in differentiating human skeletal musscle cells in vitro. / Cell Struct. Funct. 22, 163鈥?71. CrossRef
    143. Mues, A., van der Ven, P. F., Young, P., Furst, D. O., and Gautel, M. (1998) Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformationdependent way with telethonin. / FEBS Lett. 428, 111鈥?14.
    144. Zou, P., Gautel, M., Geerlof, A., Wilmanns, M., Koch, M. H., and Svergun, D. I. (2003) Solution scattering suggests cross-linking function of telethonin in the complex with titin. / J. Biol. Chem. 278, 2636鈥?644.
    145. Faulkner G., Pallavicini, A., Comelli, A., et al. (2000) FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. / J. Biol. Chem. 275, 41,234鈥?1,242.
    146. Whiting, A., Wardale, J., and Trinick, J. (1989) Does titin regulatethe length of muscle thick filaments? / J. Mol. Biol. 205, 263鈥?68.
    147. Soteriou, A., Gamage, M., and Trinick, J. (1993) A survey of interactions made by the giant protein titin. / J. Cell. Sci. 104, 119鈥?23.
    148. Houmeida, A., Holt, J., Tskhovrebova, L., and Trinick, J. (1995) Studies of the interaction between titin and myosin. / J. Cell Biol. 131, 1471鈥?481.
    149. Labeit, S. and Kolmerer, B. (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. / Science 270, 293鈥?96.
    150. Gotthardt, M., Hammer, R. E., Hubner, N., et al. (2003) Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. / J. Biol. Chem. 278, 6059鈥?065.
    151. Miller, G., Musa, H., Gautel, M., and Peckham, M. (2003) A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs, myofibrillogenesis. / J. Cell Sci. 116, 4811鈥?819.
    152. Aoki, H., Sadoshima, J., and Izumo, S. (2000) Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. / Nat. Med. 6, 183鈥?88.
    153. Du, A., Sanger, J. M., Linask, K. K., and Sanger, J. W. (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. / Dev. Biol. 257, 382鈥?94.
    154. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. / Physiol. Rev. 83, 1325鈥?358.
    155. Somlyo, A. P. and Somlyo, A. V. (1994) Signal transduction and regulation in smooth muscle [published erratum in: / Nature 372, 812]. / Nature 372, 231鈥?36.
    156. Sobieszek, A., Babiychuk, E. B., Ortner, B., and J. Borkowski. (1997) Purification and characterization of a kinase-associated, myofibrillar smooth muscle myosin light chain phosphatase possessing a calmodulin-targeting subunit. / J. Biol. Chem. 272, 7027鈥?033.
    157. Levine, R.J.C., Kensler, R. W., Yang, Z., Stull, J. T. and Sweeney, H. L. (1996) Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments. / Biophys. J. 71, 898鈥?07.
    158. Rhee D., Sanger, J. M., and Sanger, J. W. (1994) The premyofibril: evidence for its role in myofibrillogenesis. / Cell Motil. Cytoskeleton 28, 1鈥?4.
    159. Golson, M. L., Sanger, J. M., and Sanger, J. W. (2004) Inhibitors arrest myofibrillogenesis in skeletal muscle cells at early stages of assembly. / Cell Motil. Cytoskeleton 59, 1鈥?6.
    160. Wera, S., and Hemming, B. A. (1995) Serine/threonine protein phosphatases. / Biochem. J. 311, 17鈥?9.
    161. Wu, Y., Erdodi F., Muranyi, A., Nullmeyer, K. D., Lynch, R. M., and Hartshorne, D. J. (2003) Myosin phosphatase and myosin phosphorylation in differentiating C2C12 cells. / J. Muscle Res. Cell Motil. 24, 499鈥?11.
    162. Post, P. L., DeBiasio, R. L., and Taylor, D. L. (1995) A fluorescent protein biosensor of myosin II regulatory light chain phosphorylation reports a gradient of phosphorylated myosin II in migrating cells. / Mol. Biol. Cell 6, 1755鈥?768.
    163. Chew T. L., Wolf, W. A., Gallagher, P. J., Matsumura, F., and Chisholm R. L. (2002) A fluorescent resonant energy transfer-based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows. / J. Cell Biol. 156, 543鈥?53.
    164. Isotani, E., Zhi, G., Lau, K. S., et al. (2004) Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse. / Proc. Natl. Acad. Sci. USA 101, 6279鈥?284.
    165. Geguchadze, R., Zhi, G., Lau, K. S. et al. (2004) Quantitative measurements of Ca(2+)/calmodulin binding and activation of myosin light chain kinase in cells. / FEBS Lett. 557, 121鈥?24.
    166. Manasek, F. J. (1968) Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. / J. Morphol. 125, 329鈥?65.
    167. Antin, P. B., Forry-Schaudies, S., Friedman, T. M., Tapscott, S. J., and Holtzer, H. (1981) Taxol induces postmitotic myoblasts to assemble interdigitating, microtubule-myosin arrays that exclude actin filaments. / J. Cell Biol. 90 300鈥?08.
    168. LoRusso, S. M., Rhee, D., Sanger, J. M., and Sanger, J. W. (1997) Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. / Cell Motil. Cytoskeleton 37, 183鈥?98.
    169. Gregorio, C. C., and Fowler, V. M. (1995) Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. / J. Cell. Biol. 129, 683鈥?95.
    170. Greenfield, N. J., and Fowler, V. M. (2002) Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin. / Biophys. J. 82, 2580鈥?591. CrossRef
    171. Beall, C. J., Sepanski, M. A., and Fyrberg, E. A. (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. / Genes Dev. 3, 131鈥?40.
    172. Bejsovec, A., and Anderson, P. (1990) Functions of the myosin ATP and actin binding sites are requires for / C. elegans thick filament assembly. / Cell 60, 133鈥?40.
    173. Bejsovec, A., and Anderson, P. (1988) Myosin heavy-chain mutations that disrupt / Caenorhabditis elegans thick filament assembly. / Genes Dev. 2, 1307鈥?317.
    174. Kronert, W.A., O'Donnell, P.T., and Bernstein, S. I. (1994) A charge change in an evolutionarily-conserved region of the myosin globular head prevents myosin and thick filament accumulation in / Drosophila. / J. Mol. Biol. 236, 697鈥?02.
    175. Cripps, R. M., Suggs, J. A., and Bernstein, S. I. (1999) Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. / EMBO J. 18, 1793鈥?804.
    176. Swank, D. M., Wells, L., Kronert, W. A., Morrill, G. E., and Bernstein, S. I. (2000) Determing structure/function relationships for sarcomeric myosin heavy chain by genetic and transgenic manipulation of / Drosophila. / Microsc. Res. Tech. 50, 430鈥?42.
    177. Soeno, Y., Shimada, Y., and Obinata, T. (1999) BDM (2,3-butanedione monoxime), an inhibitor of myosin-actin interaction, suppresses myofibrillogenesis in skeletal muscle cells in culture. / Cell Tissue Res. 295, 307鈥?16.
    178. Ramachandran, I., Terry, M., and Ferrari, M. B. (2003) Skeletal muscle myosin cross-bridge cycling is necessary for myofibrillogenesis. / Cell Motil. Cytoskeleton 55, 61鈥?2.
    179. Van der Ven, P. F., Bartsch, J. W., Gautel, M., Jockusch, H., and Furst, D. O. (2000) A functional knock-out of titin results in defective myofibril assembly. / J. Cell Sci. 113, 1405鈥?414.
    180. Mardahl-Dumesnil, M., and Fowler, V.M. (2001) Thin filaments elongate from their pointed ends during myofibril assembly in / Drosophila indirect flight muscle. / J. Cell Biol. 155, 1043鈥?053.
    181. Centner, T., Yano, J., Kimura, E., et al. (2001) Identification on muscle specific ring finger proteins as potential regulators of the titin kinase domain. / J. Mol. Biol. 306, 717鈥?26.
    182. McElhinny, A. S., Perry C. N., Witt, C. C., Labeit, S., and Gregorio, C. C. (2004) Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. / J. Cell Sci. 117, 3175鈥?188.
    183. Lange, S., Xiang, F., Yakovenko, A., et al. (2005) The kinase domain of titin controls muscle gene expression and protein turnover. / Science 308, 1599鈥?603.
    184. Wu, H., Naya, F. J., McKinsey, T. A., et al. (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. / EMBO J. 19, 1963鈥?973.
    185. Berridge, M. J., Bootman, M. D., and Lipp, P. (1998) Calcium鈥攁 life and death signal. / Nature 395, 645鈥?48.
    186. Berridge, M., Lipp, P., and Bootman, M. (1999) Calcium signalling, / Curr. Biol. 9, R157-R159.
    187. Bootman, M. D., Thomas, D., Tovey, S. C., Berridge, M. J., and Lipp, P. (2000) Nuclear calcium signalling. / Cell Mol. Life Sci. 57, 371鈥?78.
    188. Maslanski, J. A., Leshko, L., and Busa, W. B. (1992) Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. / Science 256, 243鈥?45.
    189. Creton, R., Speksnijder, J. E., and Jaffe, L. F. (1998) Patterns of free calcium in zebrafish embryos. / J. Cell Sci. 111, 1613鈥?622.
    190. Gilland, E., Miller, A. J., Karplus, E., Baker, R., and and Webb, S. E. (1999) Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. / Proc. Natl. Acad. Sci, USA 96, 157鈥?61.
    191. Cognard, C., Constantin, B., River-Bastide, M., and Raymond, G. (1993) Intracellular calcium transients induced by different kinds of stimulus during myogenesis of rat skeletal muscle cells studied by laser cytofluorimetry with indo-1. / Cell Calcium 14, 333鈥?48.
    192. Rivet-Bastide, M., Imbert, N., Cognard, C., Duport, G., Rideau, Y., and Raymond, G. (1993) Changes in cytosolic resting ionized calcium level and in calcium transients during / in vitro development of normal and duchenne muscular dystrophy cultured skeletal muscle measured by laser cytofluorimetry using indo-1. / Cell Calcium 14, 563鈥?71.
    193. Schwartz, L. M., and Kay, B. K. (1988). Differential expression of the Ca2+-binding protein parvalbumin during myogenesis in / Xenopus laevis. / Dev. Biol. 128, 441鈥?52.
    194. Root, D. D. and Wang, K. (1994) Calmodulin-sensitive interaction of human nebulin fragments with actin and myosin. / Biochemistry 33, 12,581鈥?2,591.
    195. Ashworth, R. (2004) Approaches to measuring calcium in zebrafish: focus on neuronal development. / Cell Calcium 35, 393鈥?02.
    196. Fetcho, J. R., and Bhatt, D. H. (2004) Genes and photons: new avenues into the neuronal basis of behavior. / Curr. Opin. Neurobiol. 14, 707鈥?14.
    197. Nicol, R.L., Frey, N., and Olson, E. N. (2000) From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease. / Annu. Rev. Genomics Hum. Genet. 1, 179鈥?23.
    198. Spitzer, N. C. (2002) Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. / J. Physiol. 96, 73鈥?0.
    199. Fournier, H. N., Albiges-Rizo, C., and Block, M. R. (2003) New insights into Nm23 control of cell adhesion and migration. / J. Bioenerg. Biomembr. 35, 81鈥?7.
    200. Lombardi, D., and Mileo, A. M. (2003) Protein intractions provide new insight into Nm23/nucleoside diphosphate kinase functions. / J. Bioenerg. Biomembr. 35, 67鈥?1.
    201. Ouatas, T., Salerno, M., Palmieri, D., and Steeg, P. S. (2003) Basic and translational advances in cancer metastasis: Nm23. / J. Bioenerg. Biomembr. 35, 73鈥?9.
    202. Statham, H. E., Duncan, C. J., and Smith, J. L. (1976) The effect of the ionophore A23187 on the ultrastructure and electrophysiological properties of frog skeletal muscle. / Cell Tissue Res. 173, 193鈥?09.
    203. Lorenzon, P., Grohovaz, F., and Ruzzier, F. (2000) Voltage-and ligand-gated ryanodine receptors are functionally separated in developing C2C12 mouse myotubes. / J. Physiol. 525, 499鈥?07.
    204. Hori, S., Sugiura, H., Shimizu, T., et al. (1989) Detection of dystrophin on two-dimensional gel electrophoresis. / Biochem. Biophys. Res. Commun. 161, 726鈥?31.
    205. Kobayashi, R., Toyoshima, I., Masamune, O., and Tashima, Y. (1990) Detection and isolation of a 30 kDa abnormal protein in avian dystrophic muscle. / J. Biochem. 107, 51鈥?5.
    206. Kamper, A., and Rodemann, H. P. (1992) Alterations of protein degradation and 2-D protein pattern in muscle cells of MDX and DMD origin. / Biochem. Biophys. Res. Commun. 189, 1484鈥?490.
    207. Hojlund, K., Staehr, P., Hansen, B. F., et al. (2003) Increased phosphorylation of skeletal muscle glycogen synthase at NH2-terminal sites during physiological hyperinsulinemia in type 2 diabetes. / Diabetes 52, 1393鈥?402.
    208. Hoffman, E. P., Brown, K. J., and Eccleston, E. (2003) New molecular research technologies in the study of muscle disease. / Curr. Opin. Rheumatol. 15, 698鈥?07.
    209. Towbin, J. A., and Bowles, N. E. (2001) Molecular genetics of left ventricular dysfunction. / Curr. Mol. Med. 1, 81鈥?0.
    210. Bashyam, M. D., Savithri, G. R., Kumar, M. S., Narasimhan, C., and Nallari P. (2003) Molecular genetics of familial hypertrophic cardiomyopathy (FHC). / J. Hum. Genet. 48, 55鈥?4.
    211. Gomes, A. V., and Potter, J. D. (2004) Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. / Mol. Cell Biochem. 263, 99鈥?14.
    212. Bonnemann, C. G., and Laing, N. G. (2004) Myopathies resulting from mutations in sarcomeric proteins. / Curr. Opin. Neurol. 17, 529鈥?37.
    213. Scoote, M., and Williams, A. J. (2002) The cardiac ryanodine receptor (calcium release channel): emerging role in heart failure and arrhythmia pathogenesis. / Cardiovasc. Res. 56, 359鈥?72.
    214. Laitinen, P. J., Swan, H., Piippo, K., Viitasalo, M., Toivonen, L., and Kontula, K. (2004) Genes, exercise and sudden death: molecular basis of familial catecholaminergic polymorphic ventricular tachycardia. / Ann. Med. 36, 81鈥?6.
    215. Benkusky, N. A., Farrell, E. F., and Valdivia, H. H. (2004) Ryanodine receptor channelopathies. / Biochem. Biophys. Res. Commun. 322, 1280鈥?285.
    216. Frank, J. P., Harati, Y., Butler, I. J., Nelson, T. E., and Scott, C. I. (1980) Central core disease and malignant hyperthermia syndrome. / Ann. Neurol. 7, 11鈥?7.
    217. MacLennan, D. H., Duff, C., Zorzato, F., et al. (1990) Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. / Nature 343, 559鈥?61.
    218. Fujii, J., Otsu, K., Zorzato, F., et al. (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. / Science 253, 448鈥?51.
    219. McCarthy, T. V., Quane, K. A., and Lynch, P. J. (2000) Ryanodine receptor mutations in malignant hyperthermia and central core disease. / Hum. Mutat. 15, 410鈥?17.
    220. Gommans, I. M., Vlak, M. H., de Haan, A., and van Engelen, B. G. (2002) Calcium regulation and muscle disease. / J. Muscle Res. Cell Motil. 23, 59鈥?3.
    221. Mathews, K. D. and Moore, S. A. (2004) Multiminicore myopathy, central core disease, malignant hyperthermia susceptibility, and RYR1 mutations: one disease with many faces? / Arch. Neurol. 61, 27鈥?9.
    222. Monnier, N. and Lunardi, J. (2000) Biology of malignant hyperthermia: a disease of the calcium channels of the skeletal muscle. / Ann. Biol. Clin. 58, 147鈥?56.
    223. Showalter, C. J., and Engel, A. G. (1997) Acute quadriplegic myopathy: analysis of myosin isoforms and evidence for calpain-mediated proteolysis. / Muscle Nerve 20, 316鈥?22.
    224. Poetter, K., Jiang, H., Hassanzadeh, S. et al. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. / Nat. Genet. 13, 63鈥?9.
    225. Gailly, P. (2002) New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. / Biochim. Biophys. Acta 1600, 38鈥?4.
    226. Bassel-Duby, R., and Olson, E. N. (2003) Role of calcineurin in striated muscle: development, adaptation, and disease. / Biochem. Biophys. Res. Commun. 311, 1133鈥?141.
    227. Rizzuto, R., and Pozzan, T. (2003) When calcium goes wrong: genetic alterations of a ubiquitous signaling route. / Nat. Genet. 34, 135鈥?41.
    228. Mathews, K. D., and Moore, S. A. (2004) Multiminicore myopathy, central core disease, malignant hyperthermia susceptibility and RYR1 mutations: one disease with many faces? / Arch. Neurol. 61, 27鈥?9.
    229. Rizzuto, R., and Pozzan, T. (2003) When calcium goes wrong: genetic alterations of a ubiquitous signaling route. / Nat. Genet. 34, 135鈥?41.
    230. Mathews, K. D., and Moore, S. A. (2004) Multiminicore myopathy, central core disease, malignant hyperthermia susceptibility, and RYR1 mutations: one disease with many faces? / Arch. Neurol. 61, 27鈥?9.
  • 作者单位:Michael B. Ferrari (1)
    Sireesha Podugu (1)
    Jeffery D. Eskew (1)

    1. School of Biological Sciences, University of Missouri, 5007 Rockhill Road, 64110, Kansas City, MO
文摘
Over the last half century, major theoretical and experimental advances have been made in understanding the molecular architecture (e.g., sarcomeric organization) and biophysics (e.g. excitation-contraction coupling) of striated muscle. Studies of how the contractile apparatus is assembled have a shorter history, but our understanding has deepened considerably over the last decade. This review focuses on spontaneous intracellular calcium (Ca2+) signals and their role in skeletal muscle myofibrillogenesis. In embryonic skeletal muscle, several classes of spontaneous Ca2+ signal occur both in vivo and in culture, and blocking their production prevents de novo sarcomere assembly. This review includes a brief overview of myofibrillogenesis, discussion of spontaneous Ca2+ signals produced in embryonic skeletal muscle, the Xenopus model system, the role of Ca2+ signals in regulating assembly of the three major filament systems (actin, titin, and myosin), integration of physiological and biochemical approaches to the problem, and the clinical relevance of basic research in this area. Interspersed throughout are suggestions for future directions and citations for reviews in closely related areas not covered herein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700