Reverse Engineering Methodology for Bioinformatics Based on Genetic Programming, Differential Expression Analysis and Other Statistical Methods
详细信息    查看全文
  • 作者:Corneliu T. C. Arsene (7)
    Denisa Ardevan (7)
    Paul Bulzu (7)
  • 关键词:GP RODES methodology ; Genetic programming ; Differential expression analysis ; Smoothing spline regression ; MicroRNA
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2014
  • 出版时间:2014
  • 年:2014
  • 卷:1
  • 期:1
  • 页码:161-177
  • 全文大小:2,342 KB
  • 参考文献:1. Crombach, A., Wotton, K.R., Cicin-Sain, D., Ashyraliyev, M., Jaeger, J.: Efficient reverse-engineering of a developmental gene regulatory network. PLoS Comput. Biol. 8(7) (2012)
    2. D鈥檋aeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707鈥?26 (2000) CrossRef
    3. Jaeger, J., Crombach, A.: Life鈥檚 attractors: understanding developmental systems through reverse engineering and in silico evolution. Adv. Exp. Med. Biol. 751, 93鈥?19 (2012) CrossRef
    4. Garnder, T.S., Faith, J.J.: Reverse-engineering transcription control networks. Phys. Life Rev. 2, 65鈥?8 (2005)
    5. Rockman, M.V.: Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 456(7223), 738鈥?44 (2008) CrossRef
    6. Floares, A.G.: Toward personalized therapy using artificial intelligence tools to understand and control drug gene networks. In: Ramov, B. (ed.) New trends in technologies. Intech, Rijeka (2010). ISBN 978-953-7619-62-6
    7. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., Guthke, R.: Gene regulatory network inference: data integration in dynamic models-a review. BioSystems 96, 86鈥?03 (2009) CrossRef
    8. Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface 5, S85鈥揝94 (2008) CrossRef
    9. Nariai, N., Kim, S., Imoto, S., Miyano, S.: Using protein鈥損rotein interactions for refining gene networks estimated from microarray data by Bayesian networks. In: Proceeding of the Pacific Symposium on Biocomputing, pp. 336鈥?47 (2004)
    10. Vilela, M., Chou, I.C., Vinga, S., Vasconcelos, A.T., Voit, E.O., Almeida, J.S.: Parameter optimization in S-system models. BMC Syst. Biol. 16(2), 35 (2008) CrossRef
    11. Voit, E.O.: Modelling metabolic networks using power-laws and S-systems. Essays Biochem. 45, 29鈥?0 (2008) CrossRef
    12. Spieth, C., Hassis, N., Streichert, F.: Comparing mathematical models on the problem of network inference. In: Proceeding of the 8th Annual Conference on Genetic and evolutionary computation (GECCO 2006), Washington, USA, pp. 279鈥?85 (2006)
    13. Bar-Joseph, Z., Gitter, A., Simon, I.: Studying and modeling dynamic biological processes using time-series gene expression data. Nature 13, 552鈥?64 (2012)
    14. Floares, A., Birlutiu, A.: Reverse engineering networks as ordinary differential equations systems. In: Floares, A. (ed.) Computational Intelligence. NOVA Science Publishers, New York (2012)
    15. Floares, A.G., Luludachi, I.: Automatically inferring the dynomics and regulomics of transcription networks with unknown transcription factors and microRNAs regulators using GP RODES. In: Kasabov, N. (ed.) Springer Handbook of Bio-/Neuroinformatics, pp. 311鈥?26. Springer, Heidelberg (2014) CrossRef
    16. Floares, A.G.: Computational intelligence tools for modeling and controlling pharmacogenomic systems: genetic programming and neural networks. In: Proceedings of the 2006 IEEE World Congress on Computational Intelligence, Vancouver, CA. IEEE Press (2006)
    17. Wang, Y.: Smoothing Splines: Methods and Application. CRC Press, Boca Raton (2011) CrossRef
    18. Stewart, S.: Calculus, 7th edn. Brooks/Cole, Pacific Grove (2012)
    19. Storey, J.D., Xiao, W., Leek, J.T., Tompkins, R.G., Davis, R.W.: Significance analysis of time course microarray experiments. PNAS 102(36), 12837鈥?2842 (2005) CrossRef
    20. Aryee, M.J., Gutierrez-Pabello, J.A., Kramnik, I., Maiti, T., Quackenbush, J.: An improved empirical Bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinform. 10, 409 (2009) CrossRef
    21. Moes, M., Le Bechec, A., Crespo, I., Laurini, C., Halavatyi, A., Vetter, G., Del Sol, A., Friedercih, E.: A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS 7(4), e35440 (2012) CrossRef
    22. Saeed, A.I., Bhagabati, N.K., Braisted, J.C., Liang, W., Sharov, V., Howe, E.A., et al.: TM4 microarray software suite. Meth. Enzymol. 411, 134鈥?39 (2006) CrossRef
    23. Searson, D.P., Leahy, D.E., Willis, M.J., GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 (IMECS 2010), Hong Kong, 17鈥?9 March 2010
    24. Bessarabova, M., Ishkin, A., JeBailey, L., Nikolskaya, T., Nikolsky, Y.: Knowledge-based analysis of proteomics data. BMC Bioinform. 13(16), S13 (2012)
    25. Arsene, C.T.C., Lisboa, P.J.G., Borrachi, P., Biganzoli, E., Aung, M.S.H.: Bayesian neural networks for competing risks with covariates. In: Third International Conference in Advances in Medical, Signal and Information Processing, MEDSIP 2006, UK. IET (2006)
    26. Arsene, C.T., Lisboa, P.J., Biganzoli, E.: Model selection with PLANN-CR-ARD. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 210鈥?19. Springer, Heidelberg (2011) CrossRef
    27. Lisboa, P.J.L., Etchells, T., Jarman, I., Arsene, C.T.C., Aung, M.S.H., Eleuteri, A., Taktak, A.F.G., Ambrogi, F., Boracchi, P., Biganzoli, E.: Partial logistic artificial neural network for competing risks regularized with automatic relevance determination. IEEE Trans. Neural Netw. 20(9), 1403鈥?416 (2009) CrossRef
  • 作者单位:Corneliu T. C. Arsene (7)
    Denisa Ardevan (7)
    Paul Bulzu (7)

    7. Solutions of Artificial Intelligence Applications, 45 Vlahuta Street, Cluj-Napoca, Romania
  • ISSN:1611-3349
文摘
This paper presents a robust automatic modelling of microRNA (miRNA) dynamics which has at core a Genetic Programming (GP) Reversing Ordinary Differential Equations Systems (RODES) methodology which was developed before and which is enhanced herein and consists of four steps: (1) smooth and fit the miRNA experimental data which is enhanced in this paper with other types of statistical analyses such as gene differential expression analyses, (2) decomposition of the transcription network or ODEs system, (3) automatically discovering the structure of networks or their ODEs system model by using GP and automatically estimating parameters of the ODEs systems models, (4) identification of the biochemical and pharmacological mechanisms. All four steps are paramount to the GP RODES methodology, which has been already applied in bioinformatics, while in this paper it is underlined a robust set of procedures for implementing the first step of the four step GP RODES framework together with an application of the GP RODES on a real miRNA dataset. Specifically it is highlighted a robust method to noise for fitting omics experimental input data, which consists of the Smoothing Spline Regression (SSR) algorithm based on the Generalized Cross Validation (GCV) criterion. The differential expression analysis of a dataset of 837 mirRNAs genes (GEO accession: GSE35074) is achieved by using various statistical methods. Furthermore, a GP algorithm (i.e. GP TIPS software) is used on the SSR and GCV fitted miRNA200a (microRNA200a), miRNA200b and miRNA424, which were selected from a larger group of identified differential expressed miRNA genes and with the scope of predicting accurately the miRNAs derivatives with regard to time. While the computational findings are in agreement with the ones from the initial study by Moes et al. (2012) [21], this paper develops an enhanced GP RODES methodology which can be further applied to bioinformatics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700