Transcriptome profiling in fast versus slow-growing rainbow trout across seasonal gradients
详细信息    查看全文
  • 作者:Roy G. Danzmann ; Andrea L. Kocmarek ; Joseph D. Norman ; Caird E. Rexroad III
  • 关键词:RNAseq ; White muscle ; Sarcomere assembly ; Exercise physiology ; Metabolic profile
  • 刊名:BMC Genomics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:1,759 KB
  • 参考文献:1.Johnston IA, Bower NI, Macqueen DJ. Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol. 2011;214:1617–28.PubMed CrossRef
    2.Hosn WA, Dutilleul P, Boisclair D. Use of spectral analysis to estimate short-term periodicities in growth rates of brook trout Salvelinus fontinalis. Can J Fish Aquat Sci. 1997;54:1532–41.CrossRef
    3.Boeuf G, Le Bail PY. Does light have an influence on fish growth? Aquaculture. 1999;177:129–52.CrossRef
    4.Farbridge KJ, Leatherland JF. Lunar cycles of coho salmon, Oncorhynchus kisutch. I. Growth and feeding. J Exp Biol. 1987;129:165–78.PubMed
    5.Takemura A, Rahman MS, Nakamura S, Park YJ, Takano K. Lunar cycles and reproductino activity in reef fishes with particualr attention to rabbitfishes. Fish Fish. 2004;5:317–28.CrossRef
    6.Rowe DK, Thorpe JE, Shanks AM. Role of fat stores in the maturation of male Atlantic salmon (Salmo salar) parr. Can J Fish Aquat Sci. 1991;48:405–13.CrossRef
    7.Silverstein JT, Shearer KD, Dickhoff WW, Plisetskaya EM. Effects of growth and fatness on sexual development of chinook salmon (Oncorhynchus tshawytscha) parr. Can J Fish Aquat Sci. 1998;55:2376–82.CrossRef
    8.Shearer KD, Swanson P. The effect of whole body lipid on early sexual maturation of 1 + age male chinook salmon (Oncorhynchus tshawytscha). Aquaculture. 2000;190:343–67.CrossRef
    9.Metusalach MS, Brown JA, Shahidi MS, Ng SC, Science F. Effects of Stocking Density on Composition and Performance of Reared Arctic Charr (Salvelinus alpinus). J Aquat Food Prod Technol. 1999;8:39–57.CrossRef
    10.Heckmann BL, Zhang X, Xie X, Liu J. The G0/G1 switch gene 2 (G0S2): Regulating metabolism and beyond. Biochim Biophys Acta - Mol Cell Biol Lipids. 1831;2013:276–81.
    11.Kondo H, Suga R, Suda S, Nozaki R, Hirono I, Nagasaka R, et al. EST analysis on adipose tissue of rainbow trout Oncorhynchus mykiss and tissue distribution of adiponectin. Gene. 2011;485:40–5.PubMed CrossRef
    12.Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta. 2006;1762:164–80.PubMed CrossRef
    13.Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84.PubMed CrossRef
    14.Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci. 2004;117:5965–73.PubMed CrossRef
    15.Kostek MC, Chen Y-W, Cuthbertson DJ, Shi R, Fedele MJ, Esser KA, et al. Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol Genomics. 2007;31:42–52.
    16.Spitz F, Demignon J, Porteu A, Kahn A, Concordet JP, Daegelen D, et al. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Natl Acad Sci U S A. 1998;95:14220–5.PubMed PubMedCentral CrossRef
    17.Lindstedt SL, LaStayo PC, Reich TE. When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci. 2001;16:256–61.PubMed
    18.Herzog W. The role of titin in eccentric muscle contraction. J Exp Biol. 2014;217:2825–33.PubMed CrossRef
    19.Johnston IA, Garcia de la Serrana D, Devlin RH. Muscle fibre size optimisation provides flexibility to energy budgeting in calorie-restricted Coho salmon transgenic for growth hormone. J Exp Biol. 2014;217:3392–5.PubMed PubMedCentral CrossRef
    20.Jimenez AG, Dillaman RM, Kinsey ST. Large fibre size in skeletal muscle is metabolically advantageous. Nat Commun. 2013;4:2150.PubMed PubMedCentral CrossRef
    21.Liu C, Gersch RP, Hawke TJ, Hadjiargyrou M. Silencing of Mustn1 inhibits myogenic fusion and differentiation. Am J Physiol Cell Physiol. 2010;298:C1100–8.PubMed PubMedCentral CrossRef
    22.Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393.PubMed PubMedCentral CrossRef
    23.Tachibana I, Hemler ME. Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J Cell Biol. 1999;146:893–904.PubMed PubMedCentral CrossRef
    24.Agarkova I, Perriard JC. The M-band: An elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol. 2005;15:477–85.PubMed CrossRef
    25.Boateng SY, Goldspink PH. Assembly and maintenance of the sarcomere night and day. Cardiovasc Res. 2008;77:667–75.PubMed CrossRef
    26.Dhume A, Lu S, Horowits R. Targeted disruption of N-RAP gene function by RNA interference: A role for N-RAP in myofibril organization. Cell Motil Cytoskeleton. 2006;63:493–511.PubMed CrossRef
    27.Durgan DJ, Young ME. The cardiomyocyte circadian clock: Emerging roles in health and disease. Circ Res. 2010;106:647–58.PubMed PubMedCentral CrossRef
    28.Rudic RD, McNamara P, Reilly D, et al. Bioinformatic analysis of circadian gene oscillation in mouse aorta. Circulation. 2005;112:2716–24.PubMed CrossRef
    29.Gimble JM, Floyd ZE. Fat circadian biology. J Appl Physiol. 2009;107:1629–37.PubMed PubMedCentral CrossRef
    30.Kondo H, Suda S, Kawana Y, Hirono I, Nagasaka R, Kaneko G, et al. Effects of feed restriction on the expression profiles of the glucose and fatty acid metabolism-related genes in rainbow trout Oncorhynchus mykiss muscle. Fish Sci. 2012;78:1205–11.
    31.Overturf K, Sakhrani D, Devlin RH. Expression profile for metabolic and growth-related genes in domesticated and transgenic coho salmon (Oncorhynchus kisutch) modified for increased growth hormone production. Aquaculture. 2010;307:111–2.CrossRef
    32.Salem M, Nath J, Rexroad CE, Killefer J, Yao J. Identification and molecular characterization of the rainbow trout calpains (Capn1 and Capn2): their expression in muscle wasting during starvation. Comp Biochem Physiol B. 2005;140:63–71.PubMed CrossRef
    33.Kocmarek AL, Ferguson MM, Danzmann RG. Comparison of growth-related traits and gene expression profiles between the offspring of neomale (XX) and normal male (XY) rainbow trout. Mar Biotechnol. 2015;17:229–43.PubMed CrossRef
    34.Persson P, Sundell K, Bjornsson B, Lundqvist H. Calcium metabolism and osmoregulation during sexual maturation of river running Atlantic salmon. J Fish Biol. 1998;52:334–49.CrossRef
    35.Jamalzadeh HR, Hajirezaee S, Nazeri S, Khara H, Mirrasuli E. Identification of follicular vitellogenesis stage by monitoring of plasma calcium and estradiol-17β concentrations in the cultured Caspian brown trout, Salmo trutta caspius Kessler, 1877. Biologia (Bratisl). 2012;67:796–9.CrossRef
    36.Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657.PubMed PubMedCentral CrossRef
    37.Salem M, Vallejo RL, Leeds TD, Palti Y, Liu S, Sabbagh A, et al. RNA-seq identifies SNP markers for growth traits in rainbow trout. PLoS One. 2012;7:e36264.PubMed PubMedCentral CrossRef
    38.Liu S, Vallejo RL, Gao G, Palti Y, Weber GM, Hernandez A, et al. Identification of single-nucleotide polymorphism markers associated with cortisol response to crowding in rainbow trout. Mar Biotechnol. 2015;17:328–37.PubMed CrossRef
    39.Vallejo RL, Palti Y, Liu S, Evenhuis JP, Gao G, 3rd Rexroad CE, et al. Detection of QTL in rainbow trout affecting survival when challenged with Flavobacterium psychrophilum. Mar Biotechnol. 2014;16:349–60.PubMed CrossRef
    40.Palti Y, Vallejo RL, Gao G, Liu S, Hernandez AG, 3rd Rexroad CE, et al. Detection and validation of QTL bacterial cold water disease resistance in rainbow trout using restriction-site associated DNA sequencing. PLoS One. 2015;10:e0138435.PubMed PubMedCentral CrossRef
    41.Wringe BF, Devlin RH, Ferguson MM, Moghadam HK, Sakhrani D, Danzmann RG. Growth-related quantitative trait loci in domestic and wild rainbow trout (Oncorhynchus mykiss). BMC Genet. 2010;11:63.PubMed PubMedCentral CrossRef
    42.Kocmarek AL, Ferguson MM, Danzmann RG. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups. BMC Genomics. 2014;15:57.PubMed PubMedCentral CrossRef
    43.Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.PubMed PubMedCentral CrossRef
    44.Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.PubMed PubMedCentral CrossRef
    45.Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–21.
    46.Supek F, Bošnjak M, Škunca N, Šmuc T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.PubMed PubMedCentral CrossRef
    47.Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ, Muruganujan A, et al. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nuc Acids Res. 2006;34:W645–50.CrossRef
    48.Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, et al. The development and characterization of a 57 K single nucleotide polymorphism array for rainbow trout. Mol Ecol Resour. 2015;15:662–72.PubMed CrossRef
    49.Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9.PubMed CrossRef
  • 作者单位:Roy G. Danzmann (1)
    Andrea L. Kocmarek (1)
    Joseph D. Norman (1)
    Caird E. Rexroad III (2)
    Yniv Palti (2)

    1. Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
    2. National Center for Cool and Cold Water Aquaculture, ARS-USDA, 11861 Leetown Road, Kearneysville, WV, 25430, USA
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Circannual rhythms in vertebrates can influence a wide variety of physiological processes. Some notable examples include annual reproductive cycles and for poikilotherms, seasonal changes modulating growth. Increasing water temperature elevates growth rates in fishes, but increases in photoperiod regime can have similar influences even at constant temperature. Therefore, in order to understand the dynamics of growth in fish it is important to consider the background influence of photoperiod regime on gene expression differences. This study examined the influence of a declining photoperiod regime (winter solstice) compared to an increasing photoperiod regime (spring equinox) on white muscle transcriptome profiles in fast and slow-growing rainbow trout from a commercial aquaculture strain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700