Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment
详细信息    查看全文
  • 作者:Stefani Spranger (1)
    Holly K Koblish (3)
    Brendan Horton (1)
    Peggy A Scherle (3)
    Robert Newton (3)
    Thomas F Gajewski (1) (2)
  • 关键词:Anti ; CLTA ; 4 ; PD ; 1/PD ; L1 ; IDO inhibitor ; Combinatorial immunotherapy ; Tumor ; infiltrating lymphocytes ; T cell anergy/exhaustion ; Tumor microenvironment ; Immune inhibitory pathways
  • 刊名:Journal for Immunotherapy of Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:2
  • 期:1
  • 全文大小:320 KB
  • 参考文献:1. Gajewski TF, Schreiber H, Fu YX: Innate and adaptive immune cells in the tumor microenvironment. / Nat Immunol 2013,14(10):1014鈥?022. CrossRef
    2. Gajewski TF, Louahed J, Brichard VG: Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. / Cancer J 2010,16(4):399鈥?03. CrossRef
    3. Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G: Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. / Gynecol Oncol 2012,124(2):192鈥?98. CrossRef
    4. Fridman WH, Pages F, Sautes-Fridman C, Galon J: The immune contexture in human tumours: impact on clinical outcome. / Nat Rev Cancer 2012,12(4):298鈥?06. CrossRef
    5. Lin YH, Friederichs J, Black MA, Mages J, Rosenberg R, Guilford PJ, Phillips V, Thompson-Fawcett M, Kasabov N, Toro T, Merrie AE, Van Rij A, Yoon HS, McCall JL, Siewert JR, Holzmann B, Reeve AE: Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. / Clin Cancer Res 2007,13(2 Pt 1):498鈥?07. CrossRef
    6. Ascierto ML, Idowu MO, Zhao Y, Khalak H, Payne KK, Wang XY, Dumur CI, Bedognetti D, Tomei S, Ascierto PA, Shanker A, Bear HD, Wang E, Marincola FM, De Maria A, Manjili MH: Molecular signatures mostly associated with NK cells are predictive of relapse free survival in breast cancer patients. / J Transl Med 2013,11(1):145. CrossRef
    7. Zheng Y, Zha Y, Driessens G, Locke F, Gajewski TF: Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. / J Exp Med 2012,209(12):2157鈥?163. CrossRef
    8. Jandus C, Bioley G, Speiser DE, Romero P: Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. / Cancer Immunol Immunother 2008,57(12):1795鈥?805. CrossRef
    9. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. / Nat Med 2004,10(9):942鈥?49. CrossRef
    10. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L: Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. / Nat Med 2002,8(8):793鈥?00.
    11. Mellor AL, Sivakumar J, Chandler P, Smith K, Molina H, Mao D, Munn DH: Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. / Nat Immunol 2001,2(1):64鈥?8. CrossRef
    12. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF: Up-Regulation of PD-L1, IDO, and Tregs in the Melanoma Tumor Microenvironment Is Driven by CD8+ T Cells. / Sci Transl Med 2013,5(200):200ra116. CrossRef
    13. Hodi FS, O鈥橠ay SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ: Improved survival with ipilimumab in patients with metastatic melanoma. / N Engl J Med 2010,363(8):711鈥?23. CrossRef
    14. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. / N Engl J Med 2012,366(26):2443鈥?454. CrossRef
    15. Beatty GL, O鈥橠wyer PJ, Clark J, Shi JG, Newton RC, Schaub R, Maleski J, Leopold L, Gajewski T: Phase I study of the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the oral inhibitor of indoleamine 2,3-dioxygenase (IDO1) INCB024360 in patients (pts) with advanced malignancies. / J Clin Oncol 2013, 31:3025. CrossRef
    16. Rasku MA, Clem AL, Telang S, Taft B, Gettings K, Gragg H, Cramer D, Lear SC, McMasters KM, Miller DM, Chesney J: Transient T cell depletion causes regression of melanoma metastases. / J Transl Med 2008, 6:12. CrossRef
    17. Rech AJ, Vonderheide RH: Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. / Ann N Y Acad Sci 2009, 1174:99鈥?06. CrossRef
    18. Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD: Agonist antibodies to TNFR molecules that costimulate T and NK cells. / Clin Cancer Res 2013,19(5):1044鈥?053. CrossRef
    19. Moran AE, Kovacsovics-Bankowski M, Weinberg AD: The TNFRs OX40, 4鈥?BB, and CD40 as targets for cancer immunotherapy. / Curr Opin Immunol 2013,25(2):230鈥?37. CrossRef
    20. Nirschl CJ, Drake CG: Molecular pathways: Co-expression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. / Clin Cancer Res 2013,19(18):4917鈥?924. CrossRef
    21. Nicholas C, Lesinski GB: Immunomodulatory cytokines as therapeutic agents for melanoma. / Immunotherapy 2011,3(5):673鈥?90. CrossRef
    22. Ngiow SF, Von Scheidt B, Akiba H, Yagita H, Teng MW, Smyth MJ: Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. / Cancer Res 2011,71(10):3540鈥?551. CrossRef
    23. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK: Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. / Clin Cancer Res 2013,19(20):5636鈥?646. CrossRef
    24. John LB, Howland LJ, Flynn JK, West AC, Devaud C, Duong CP, Stewart TJ, Westwood JA, Guo ZS, Bartlett DL, Smyth MJ, Kershaw MH, Darcy PK: Oncolytic virus and anti-4鈥?BB combination therapy elicits strong antitumor immunity against established cancer. / Cancer Res 2012,72(7):1651鈥?660. CrossRef
    25. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DA: Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. / Cancer Res 2012,72(4):917鈥?27. CrossRef
    26. Takeda K, Okumura K, Smyth MJ: Combination antibody-based cancer immunotherapy. / Cancer Sci 2007,98(9):1297鈥?302. CrossRef
    27. Spranger S, Gajewski T: Rational combinations of immunotherapeutics that target discrete pathways. / J Immunother Cancer 2013, 1:16. CrossRef
    28. Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, Wei B, Hogg N, Garside P, Rudd CE: Reversal of the TCR stop signal by CTLA-4. / Science 2006,313(5795):1972鈥?975. CrossRef
    29. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF: PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. / Cancer Res 2004,64(3):1140鈥?145. CrossRef
    30. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. / Proc Natl Acad Sci USA 2002,99(19):12293鈥?2297. CrossRef
    31. Iwai Y, Terawaki S, Honjo T: PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. / Int Immunol 2005,17(2):133鈥?44. CrossRef
    32. Krummel MF, Allison JP: CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. / J Exp Med 1996,183(6):2533鈥?540. CrossRef
    33. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L: Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. / Cancer Res 2005,65(3):1089鈥?096.
    34. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA: CTLA-4 can function as a negative regulator of T cell activation. / Immunity 1994,1(5):405鈥?13. CrossRef
    35. Koblish HK, Hansbury MJ, Bowman KJ, Yang G, Neilan CL, Haley PJ, Burn TC, Waeltz P, Sparks RB, Yue EW, Combs AP, Scherle PA, Vaddi K, Fridman JS: Hydroxyamidine inhibitors of indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. / Mol Cancer Ther 2010,9(2):489鈥?98. CrossRef
    36. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. / J Exp Med 2013,210(9):1695鈥?710. CrossRef
    37. Imai N, Ikeda H, Tawara I, Shiku H: Tumor progression inhibits the induction of multifunctionality in adoptively transferred tumor-specific CD8+ T cells. / Eur J Immunol 2009,39(1):241鈥?53. CrossRef
    38. Perales MA, Yuan J, Powel S, Gallardo HF, Rasalan TS, Gonzalez C, Manukian G, Wang J, Zhang Y, Chapman PB, Krown SE, Livingston PO, Ejadi S, Panageas KS, Engelhorn ME, Terzulli SL, Houghton AN, Wolchok JD: Phase I/II study of GM-CSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma. / Mol Ther 2008,16(12):2022鈥?029. CrossRef
    39. Rosenberg SA, Dudley ME: Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. / Proc Natl Acad Sci USA 2004,101(Suppl 2):14639鈥?4645. CrossRef
    40. Halin C, Scimone ML, Bonasio R, Gauguet JM, Mempel TR, Quackenbush E, Proia RL, Mandala S, Von Andrian UH: The S1P-analog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. / Blood 2005,106(4):1314鈥?322. CrossRef
    41. Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF: Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. / Cancer Res 2009,69(7):3077鈥?085. CrossRef
    42. Peggs KS, Quezada SA, Allison JP: Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. / Immunol Rev 2008, 224:141鈥?65. CrossRef
    43. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ: Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. / Nat Med 2003,9(10):1269鈥?274. CrossRef
    44. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP: Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. / J Exp Med 2013,210(7):1389鈥?402. CrossRef
    45. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G: Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. / Cancer Res 2013,73(12):3591鈥?603. CrossRef
    46. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varela-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH: Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. / Proc Natl Acad Sci USA 2009,106(9):3360鈥?365. CrossRef
    47. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, O鈥橠ay SJ, Hoos A, Humphrey R, Berman DM, Lonberg N, Korman AJ: Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. / Ann N Y Acad Sci 2013,1291(1):1鈥?3. CrossRef
    48. Markiewicz MA, Fallarino F, Ashikari A, Gajewski TF: Epitope spreading upon P815 tumor rejection triggered by vaccination with the single class I MHC-restricted peptide P1A. / Int Immunol 2001,13(5):625鈥?32. CrossRef
    49. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M: Nivolumab plus ipilimumab in advanced melanoma. / N Engl J Med 2013,369(2):122鈥?33. CrossRef
    50. Kline J, Zhang L, Battaglia L, Cohen KS, Gajewski TF: Cellular and molecular requirements for rejection of B16 melanoma in the setting of regulatory T cell depletion and homeostatic proliferation. / J Immunol 2012,188(6):2630鈥?642. CrossRef
    51. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, Leffet L, Hansbury MJ, Thomas B, Rupar M, Waeltz P, Bowman KJ, Polam P, Sparks RB, Yue EW, Li Y, Wynn R, Fridman JS, Burn TC, Combs AP, Newton RC, Scherle PA: Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. / Blood 2010,115(17):3520鈥?530. CrossRef
  • 作者单位:Stefani Spranger (1)
    Holly K Koblish (3)
    Brendan Horton (1)
    Peggy A Scherle (3)
    Robert Newton (3)
    Thomas F Gajewski (1) (2)

    1. Department of Pathology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
    3. Incyte Corporation, Wilmington, DE, 19880, USA
    2. Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
  • ISSN:2051-1426
文摘
Background Blockade of immune inhibitory pathways is emerging as an important therapeutic modality for the treatment of cancer. Single agent treatments have partial anti-tumor activity in preclinical models and in human cancer patients. Inasmuch as the tumor microenvironment shows evidence of multiple immune inhibitory mechanisms present concurrently, it has been reasoned that combination therapies may be required for optimal therapeutic effect. Methods To test this notion, we utilized permutations of anti-CTLA-4 mAb, anti-PD-L1 mAb, and/or the IDO inhibitor INCB23843 in the murine B16.SIY melanoma model. Results All three combinations showed markedly improved tumor control over single treatments, with many mice achieving complete tumor rejection. This effect was seen in the absence of vaccination or adoptive T cell therapy. The mechanism of synergy was investigated to examine the priming versus effector phase of the anti-tumor immune response. Only a minimal increase in priming of anti-tumor T cells was observed at early time points in the tumor-draining lymph nodes (TdLN). In contrast, as early as three days after therapy initiation, a marked increase in the capacity of tumor-infiltrating CD8+ T cells to produce IL-2 and to proliferate was found in all groups treated with the effective combinations. Treatment of mice with FTY720 to block new T cell trafficking from secondary lymphoid structures still enabled restoration of IL-2 production and proliferation by intratumoral T cells, and also retained most of the tumor growth control. Conclusions Our data suggest that the therapeutic effect of these immunotherapies was mainly mediated through direct reactivation of T cells in situ. These three combinations are attractive to pursue clinically, and the ability of intratumoral CD8+ T cells to produce IL-2 and to proliferate could be an important biomarker to integrate into clinical studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700